To find the zeros of a quadratic fiunction given the equation you can use the next quadratic formula after equal the function to 0:
![\begin{gathered} ax^2+bx+c=0 \\ \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20ax%5E2%2Bbx%2Bc%3D0%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5Cend%7Bgathered%7D)
For the given function:

![x=\frac{-(-10)\pm\sqrt[]{(-10)^2-4(2)(-3)}}{2(2)}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-%28-10%29%5Cpm%5Csqrt%5B%5D%7B%28-10%29%5E2-4%282%29%28-3%29%7D%7D%7B2%282%29%7D)
![x=\frac{10\pm\sqrt[]{100+24}}{4}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B10%5Cpm%5Csqrt%5B%5D%7B100%2B24%7D%7D%7B4%7D)
![\begin{gathered} x=\frac{10\pm\sqrt[]{124}}{4} \\ \\ x=\frac{10\pm\sqrt[]{2\cdot2\cdot31}}{4} \\ \\ x=\frac{10\pm\sqrt[]{2^2\cdot31}}{4} \\ \\ x=\frac{10\pm2\sqrt[]{31}}{4} \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B10%5Cpm%5Csqrt%5B%5D%7B124%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B10%5Cpm%5Csqrt%5B%5D%7B2%5Ccdot2%5Ccdot31%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B10%5Cpm%5Csqrt%5B%5D%7B2%5E2%5Ccdot31%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B10%5Cpm2%5Csqrt%5B%5D%7B31%7D%7D%7B4%7D%20%5C%5C%20%20%5Cend%7Bgathered%7D)
![\begin{gathered} x_1=\frac{10}{4}+\frac{2\sqrt[]{31}}{4} \\ \\ x_1=\frac{5}{2}+\frac{\sqrt[]{31}}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x_1%3D%5Cfrac%7B10%7D%7B4%7D%2B%5Cfrac%7B2%5Csqrt%5B%5D%7B31%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x_1%3D%5Cfrac%7B5%7D%7B2%7D%2B%5Cfrac%7B%5Csqrt%5B%5D%7B31%7D%7D%7B2%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered} x_2=\frac{10}{4}-\frac{2\sqrt[]{31}}{4} \\ \\ x_2=\frac{5}{2}-\frac{\sqrt[]{31}}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x_2%3D%5Cfrac%7B10%7D%7B4%7D-%5Cfrac%7B2%5Csqrt%5B%5D%7B31%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x_2%3D%5Cfrac%7B5%7D%7B2%7D-%5Cfrac%7B%5Csqrt%5B%5D%7B31%7D%7D%7B2%7D%20%5Cend%7Bgathered%7D)
Then, the zeros of the given quadratic function are:
![\begin{gathered} x=\frac{5}{2}+\frac{\sqrt[]{31}}{2} \\ \\ x_{}=\frac{5}{2}-\frac{\sqrt[]{31}}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B5%7D%7B2%7D%2B%5Cfrac%7B%5Csqrt%5B%5D%7B31%7D%7D%7B2%7D%20%5C%5C%20%20%5C%5C%20x_%7B%7D%3D%5Cfrac%7B5%7D%7B2%7D-%5Cfrac%7B%5Csqrt%5B%5D%7B31%7D%7D%7B2%7D%20%5Cend%7Bgathered%7D)
Answer: Third option
Answer:

Step-by-step explanation:
Given
← factor both numerator and denominator
=
← cancel common factor (1 - 2b) on numerator/denominator
=
← cancel 6 and 3 by 3
= 
Answer:
perimeter of a children's playground, area of a house, volume of a glass of orange juice.
Step-by-step explanation:
Answer: There is not a good prediction for the height of the tree when it is 100 years old because the prediction given by the trend line produced by the regression calculator probably is not valid that far in the future.
Step-by-step explanation:
Years since tree was planted (x) - - - - height (y)
2 - - - - 17
3 - - - - 25
5 - - - 42
6 - - - - 47
7 - - - 54
9 - - - 69
Using a regression calculator :
The height of tree can be modeled by the equation : ŷ = 7.36X + 3.08
With y being the predicted variable; 7.36 being the slope and 3.08 as the intercept.
X is the independent variable which is used in calculating the value of y.
Predicted height when years since tree was planted(x) = 100
ŷ = 7.36X + 3.08
ŷ = 7.36(100) + 3.08
y = 736 + 3.08
y = 739.08
Forward prediction of 100 years produced by the trendline would probably give an invalid value because the trendline only models a range of 9 years prediction. However, a linear regression equation isn't the best for making prediction that far in into the future.
Answer: x=80°
Explanation:
To find the exterior angle x we first need to find the last corner angle (a) of the triangle. The angles of triangles add up to 180° so we can use the formula: 25+55+a=180
Solving formula:
25+55+a=180
80+a=180
(Subtract 80 from both sides)
a=100°
Now that we know a=100 we can find the exterior angle. a+x=180 because the angles are on a straight line which equals 180°
a+x=180
100+x=180
(Subtract 100 from both sides)
x=80°
Hope this helps! Please leave a thanks if possible so I can continue to help others :)