The final velocity is 2.7 m/s
Explanation:
We can solve this problem by using the principle of conservation of momentum: in fact, in absence of external forces, the total momentum of the system must be conserved before and after the collision.
Therefore we can write:
where:
is the mass of the putty
is the initial velocity of the putty (we take its direction as positive direction)
is the mass of the ball
is the initial velocity of the ball (at rest)
is the final combined velocity of the two putty+ball
Re-arranging the equation and substituting the values, we find the final combined velocity:
And the positive sign indicates their final direction is the same as the initial direction of the putty.
Learn more about momentum here:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Answer:
Explanation:
This problem bothers on the energy stored in a spring in relation to conservation of energy
Given data
Mass of block m =200g
To kg= 200/1000= 0.2kg
Spring constant k = 1.4kN/m
=1400N/m
Compression x= 10cm
In meter x=10/100 = 0.1m
Using energy considerations or energy conservation principles
The potential energy stored in the spring equals the kinetic energy with which the block move away from the spring
Potential Energy stored in spring
P.E=1/2kx^2
Kinetic energy of the block
K.E =1/mv^2
Where v = velocity of the block
K.E=P.E (energy consideration)
1/2kx^2=1/mv^2
Kx^2= mv^2
Solving for v we have
v^2= (kx^2)/m
v^2= (1400*0.1^2)/0.2
v^2= (14)/0.2
v^2= 70
v= √70
v= 8.36m/s
a. Distance moved if the ramp exerts no force on the block
Is
S= v^2/2gsinθ
Assuming g= 9. 81m/s^2
S= (8.36)^2/2*9.81*sin60
S= 69.88/19.62*0.866
S= 69.88/16.99
S= 4.11m