made from pure metals . . . no;
they've been made from all kinds of weird compounds and alloys.
conduct electricity with zero resistance . . . yes;
that's why they're called "superconductors".
produce a strong magnetic field . . . possible, but not because it's a superconductor;
just like any other conductor, the magnetic field depends on the current that's flowing in the conductor.
no loss of energy in the transfer of electricity . . .
there's no loss of energy in the current flowing in the superconductor;
but if you tried to transfer the current out of the superconductor into
something else, then there would be some loss.
Answer:
"The wavelengths are the same for both. The width of slit 1 is larger than the width of slit 2."
Explanation:
The full question has not been provided, so I just copied this into the web and found this answer and explanation on quizlet:
"The wavelengths are the same for both. The width of slit 1 is larger than the width of slit 2.
D sin θ = m λ
if the wavelengths are the same, then if the angle is smaller, the slit width must be larger. The top photo shows a pattern that is more closely spaced. That means the angle is smaller. The slit width must be larger."
This answer/explanation should be correct, as we are looking at bright fringes and the formula being used corresponds to the parameters of the question.
Hope this helps!
Answer:
100/10 = 10 , 10 × 10 = 100÷20 = 5
I'm pretty sure its wrong
That's what stars do all the time.
For example, in the sun (and MOST other stars), deep down in the center
of the sun's core, two atoms of Hydrogen get squashed together so hard
that they blend into one atom of Helium AND release some energy.
That's where the sun's energy all comes from. It's called "nuclear fusion".
It needs tremendous temperature and pressure to happen. We know how
to do it, but we can't control it. So far, the only thing we've ever been able
to use it for is Hydrogen bombs.
There are 92 elements on the Periodic Table that are found in nature,
plus another 20 or so that have been made in the laboratory, but only
a few atoms of them.
Car with a mass of 1210 kg moving at a velocity of 51 m/s.
2. What velocity must a 1340 kg car have in order to have the same momentum as a 2680 kg truck traveling at a velocity of 15 m/s to the west? 3.0 X 10^1 m/s to the west.
Hope i helped
Have a good day :)