1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
defon
3 years ago
5

Sound in water travels at a velocity governed by the relation v = √(B/rho) where B is the bulk modulus and rho is the density. F

or salt water, take B = 2.28 × 109 Pa and rho = 1043 kg/m3. A whale sends out a high frequency (10 kHz) song to another whale 1.0 km away.
Physics
1 answer:
12345 [234]3 years ago
4 0

Answer:

t = 0.67635 s

n = 6764

Explanation:

Given:

- The velocity of sound in water v:

                                    v = √(B/rho)

Where, B: Bulk Modulus = 2.28*10^9 Pa

            rho: Density of salt water = 1043 kg/m^3

- The wale sends out a high frequency f = 10 kHz

- The distance between two wales s = 1.0 km

Find:

- Time taken for the sound to travel between whales t?

- How many wavelengths can fit between the two whales n?

Solution:

- The time taken for the sound to travel from one whale to another can be determined from:

                               t = s / v

                               t = s / √(B/rho)

                               t = s*√(rho/B)

- Plug in the values:

                               t = 1000*√(1043/2.28*10^9)

                              t = 0.67635 s

- The wavelength λ of the sound emitted can be calculated by the following formula:

                               λ = √(B/rho) / f

                               λ = √(2.28*10^9/1043) / 10^4

                               λ =  0.14785 m

- The number of wavelengths n that could fit in the distance s is:

                               n*λ = s

                               n = 1000 / 0.14785

                              n = 6764

                               

You might be interested in
The type of seismic waves that arrive at the surface first and move by compressing and expanding the ground like an accordion ar
LekaFEV [45]

The answer is B. P waves.

I took the test and it was correct. I hope this helps!

3 0
3 years ago
Read 2 more answers
An asteroid is on a collision course with Earth. An astronaut lands on the rock to bury explosive charges that will blow the ast
forsale [732]

Answer:

The maximum radius the asteroid can have for her to be able to leave it entirely simply by jumping straight up is approximately 1782.45 meters

Explanation:

Whereby the height the astronaut can jump on Earth = 0.500 m, we have the following kinematic equation;

v² = u² - 2·g·h

Where;

v = The final velocity

u = The initial velocity

g = The acceleration due to gravity ≈ 9.8 m/s²

h = The height she jumps

At the maximum height, h_{max} = 0.500 m, she jumps, v = 0, therefore, we have;

0² = u² - 2·g·h_{max}

u² = 2 × 9.8 × 0.5 = 9.8

u = √9.8 ≈ 3.13

u = 3.13 m/s

Her initial jumping velocity ≈ 3.13 m/s

Escape velocity, v_e = \sqrt{\dfrac{2 \cdot G \cdot M}{r} }

Where;

M = The mass of the asteroid

G = The Universal gravitational constant = 6.67408 × 10⁻¹¹ m³/(kg·s²)

r = The radius of the asteroid

The average density of the Earth = 5515 kg/m³

The mass of the asteroid, M = Density × Volume = 5515 kg/m³× 4/3 × π × r³

The escape velocity, she has, v_e ≈ 3.13 m/s is therefore;

3.13 = \sqrt{\dfrac{2 \times 6.67408 \times 10^{-11} \times 5515 \times \frac{4}{3} \times \pi \times r^3}{r} } = r \times \sqrt{3.084 \times 10^{-6}}

r = \dfrac{3.13}{ \sqrt{3.084 \times 10^{-6}}} \approx 1782.45

Therefore, the maximum radius of the asteroid can have for her jumping velocity to be equal to the escape velocity for her to be able to leave it entirely simply by jumping straight up = r ≈ 1782.45 meters.

7 0
3 years ago
a ball is thrown horizontally from a 20 m high building with a speed of 5.0 m/s. How far from the base of the building does the
kipiarov [429]
Given:
Dy= 20 m
Vi = 5.0 m/s horizontally
A=9.81 m/s^2

Find:
Horizontal displacement

Solution:
D=ViT+(1/2)AT^2
Dy=(1/2)AT^2
T^2=Dy/(1/2)A
T=sqrt(Dy/(1/2)A)
T=sqrt(20/4.905)
T=2.0s

Dx=ViT
Dx=(5.0)(2.0)
Dx=10. meters
7 0
3 years ago
A researcher measures the thickness of a layer of benzene (n = 1.50) floating on water by shining monochromatic light onto the f
NNADVOKAT [17]

Answer:

Explanation:

This problem relates to interference of light in thin films .

The condition of bright fringe in thin films which is sandwitched by two layers of medium having lesser refractive index  is as follows.

2nt = (2n+1) λ / 2  , n is refractive index of thin layer , t is its thickness ,  λ is wavelength of light .

2 x 1.5 t = λ / 2 , if n = 0 for minimum thickness.

2 x 1.5 t = 600 / 2 nm

t = 100 nm .

5 0
3 years ago
Natalie and Will are discussing socialization. Natalie says that socialization occurs when an animal becomes accustomed to the p
skad [1K]
The correct answer for this question is this one: "C. Neither Natalie nor Will." Natalie and Will are discussing socialization. Natalie says that socialization occurs when an animal becomes accustomed to the people in the household. <span>Will says that socialization is easily attained if the animal is first exposed to humans after 12 weeks of age.</span>
7 0
3 years ago
Read 2 more answers
Other questions:
  • A sprinter is advised to reduced his speed slowly after completing his race.why
    6·1 answer
  • An iron ball and an aluminum ball of mass 100 g each are heated to the same temperature and then cooled to a temperature of 20°C
    8·1 answer
  • A material that provides little or no resistance to the flow of electric current is called a(an) A. circuit / B. conductor / C.
    5·2 answers
  • How do you know that waves sent from the sun to earth are not mechanical waves? Explain
    13·1 answer
  • Does the car traveling the longest time always travel the greatest distance? Why or why not?
    10·1 answer
  • An arrow is launched from P with a speed Vi = 25m / s. Knowing that the target Q is 10 m high, and the arrow reaches it as shown
    5·1 answer
  • Arrange the temperatures 40 ºF, 40 ºC, and 40 K from highest to lowest.
    11·2 answers
  • If the velocity of a body varied uniformly from 10 m s-1 to 25 m s-1
    10·1 answer
  • Human centrifuges are used to train military pilots and astronauts in preparation for high-g maneuvers. A trained, fit person we
    8·1 answer
  • A football is kicked from ground level with an initial velocity of 20.2 m/s at angle of 43.0 above the horizontal. How long, in
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!