Some guidance notes which may help.To calculate the current flow, Ohm's law can be used. This can be written as current=voltage/resistance, or I=V/R. V is 1.5V.R for the copper wire quoted would be calculated as R = resistivity x length/cross sectional area. The area would be calculated from the formula area = pi x diameter squared/4So, R=resistivity x length divided by (pi x diameter squared/4)Until is the resistivity of copper is known, that's about as far as can be gone.Any further questions, please ask.
ANSWER:
D) centripetal acceleration.
STEP-BY-STEP EXPLANATION:
When a body performs a uniform circular motion, the direction of the velocity vector changes at every instant. This variation is experienced by the linear vector, due to a force called centripetal, directed towards the center of the circumference that gives rise to the centripetal acceleration.
Therefore, the answer is centripetal acceleration.
Answer:

Explanation:
For this exercise we must use the principle of conservation of energy
starting point. The proton very far from the nucleus
Em₀ = K = ½ m v²
final point. The point where the proton is stopped (v = 0)
Em_f = U = q V
where the potential is
V = k Ze / r²
Let us consider that all the charge of the nucleus is in the center, therefore r is the distance from this point to the proton that is approaching
Energy is conserved
Em₀ = Em_f
½ m v² = e (
)
with this expression we can find the closest approach distance (r)