Answer:
Icy roads
Explanation:
There is so little friction you slide on it way more than other roads. :)
Answer:
According to Oxford Dictionaries "Precision" means "the quality, condition, or fact of being exact and accurate."
Explanation:
Hope this helps! :)
Answer:
The color orange is named after the fruit
Answer:
Its inductance L = 166 mH
Explanation:
Since a current, I = 0.698 A is obtained when a voltage , V = 5.62 V is applied, the resistance of the coil is gotten from V = IR
R = V/I = 5.62/0.698 = 8.052 Ω
Since we have a current of I' = 0.36 A (rms) when a voltage of V' = 35.1 V (rms) is applied, the impedance Z of the coil is gotten from
V₀' = I₀'Z where V₀ = maximum voltage = √2V' and I₀ = maximum current = √2I'
Z = V'/I' = √2 × 35.1 V/√2 × 0.36 V = 97.5 Ω
WE now find the reactance X of the coil from
Z² = X² + R²
X = √(Z² - R²)
= √(97.5² - 8.05²)
= √(9506.25 - 64.8025)
= √9441.4475
= 97.17 Ω
Now, the reactance X = 2πfL where f = frequency of generator = 93.1 Hz and L = inductance of coil.
L = X/2πf
= 97.17/2π(93.1 Hz)
= 97.17 Ω/584.965 rad/s
= 0.166 H
= 166 mH
Its inductance L = 166 mH
Answer:
a) 
b) 
Explanation:
Given:
- upward acceleration of the helicopter,

- time after the takeoff after which the engine is shut off,

a)
<u>Maximum height reached by the helicopter:</u>
using the equation of motion,

where:
u = initial velocity of the helicopter = 0 (took-off from ground)
t = time of observation


b)
- time after which Austin Powers deploys parachute(time of free fall),

- acceleration after deploying the parachute,

<u>height fallen freely by Austin:</u>

where:
initial velocity of fall at the top = 0 (begins from the max height where the system is momentarily at rest)
time of free fall


<u>Velocity just before opening the parachute:</u>



<u>Time taken by the helicopter to fall:</u>

where:
initial velocity of the helicopter just before it begins falling freely = 0
time taken by the helicopter to fall on ground
height from where it falls = 250 m
now,


From the above time 7 seconds are taken for free fall and the remaining time to fall with parachute.
<u>remaining time,</u>



<u>Now the height fallen in the remaining time using parachute:</u>



<u>Now the height of Austin above the ground when the helicopter crashed on the ground:</u>


