1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paraphin [41]
3 years ago
12

If you were to triple the size of the Earth (R = 3R⊕) and double the mass of the Earth (M = 2M⊕), how much would it change the g

ravity on the Earth (Fg = XFg⊕)?
Physics
1 answer:
EastWind [94]3 years ago
8 0

Answer:

Decreased by a factor of 4.5

Explanation:

"We have Newton formula for attraction force between 2 objects with mass and a distance between them:

F_G = G\frac{M_1M_2}{R^2}

where G =6.67408 × 10^{-11} m^3/kgs^2 is the gravitational constant on Earth. M_1, M_2 are the masses of the object and Earth itself. and R distance between, or the Earth radius.

So when R is tripled and mass is doubled, we have the following ratio of the new gravity over the old ones:

\frac{F_G}{f_g} = \frac{G\frac{M_1M_2}{R^2}}{G\frac{M_1m_2}{r^2}}

\frac{F_G}{f_g} = \frac{\frac{M_2}{R^2}}{\frac{m_2}{r^2}}

\frac{F_G}{f_g} = \frac{M_2}{R^2}\frac{r^2}{m_2}

\frac{F_G}{f_g} = \frac{M_2}{m_2}(\frac{r}{R})^2

Since M_2 = 2m_2 and r = R/3

\frac{F_G}{f_g} = \frac{2}{3^2} = 2/9 = 1/4.5

So gravity would have been decreased by a factor of 4.5  

You might be interested in
An electromagnetic wave is traveling straight down toward the center of the Earth. At a certain moment in time the electric fiel
Anika [276]

Answer:

North

Explanation:

In an electromagnetic wave, the direction of the wave, the direction of the electric field and the direction of the magnetic field are all perpendicular to each other.

Therefore, we can  find the direction of the magnetic field by using the right hand rule. We have:

- Index finger: direction of motion of the wave --> toward the center of Earth

- middle finger: direction of the electric field --> west

- thumb: direction of the magnetic field --> north

So, the magnetic field points north.

3 0
3 years ago
What traction of the radioisotope<br>remains in the body after one day?​
r-ruslan [8.4K]

The fraction of radioisotope left after 1 day is (\frac{1}{2})^{\frac{1}{\tau}}, with the half-life expressed in days

Explanation:

The question is incomplete: however, we can still answer as follows.

The mass of a radioactive sample after a time t is given by the equation:

m(t)=m_0 (\frac{1}{2})^{\frac{t}{\tau}}

where:

m_0 is the mass of the radioactive sample at t = 0

\tau is the half-life of the sample

This means that the mass of the sample halves after one half-life.

We can rewrite the equation as

\frac{m(t)}{m_0}=(\frac{1}{2})^{\frac{t}{\tau}}

And the term on the left represents the fraction of the radioisotope left after a certain time t.

Therefore, after t = 1 days, the fraction of radioisotope left in the body is

\frac{m(1)}{m_0}=(\frac{1}{2})^{\frac{1}{\tau}}

where the half-life \tau must be expressed in days in order to match the units.

Learn more about radioactive decay:

brainly.com/question/4207569

brainly.com/question/1695370

#LearnwithBrainly

5 0
3 years ago
Body of a 218 kg starta from rest and attains the velocity of 63 m/s in 9 second
Vanyuwa [196]

Answer:

567m

Explanation:

By using formula of velocity.

7 0
3 years ago
N discussing engines, the ratio of output work to input work expressed as a percentage is called
djyliett [7]

The ration of output work to input work expressed as a percentage is called <u>Efficiency</u>.

5 0
3 years ago
a foul ball is hit into the stands at a baseball game. the ball rises to a height of 38 meters and is caught on its way down by
lisov135 [29]

The velocity of the ball when it was caught is 12.52 m/s.

<em>"Your question is not complete it seems to be missing the following, information"</em>,

find the velocity of the ball when it was caught.

The given parameters;

maximum height above the ground reached by the ball, H = 38 m

height above the ground where the ball was caught, h = 30 m

The height traveled by the ball when it was caught is calculated as follows;

y = H - h

y = 38 - 30 = 8 m

The velocity of the ball when it was caught is calculated as;

v_f^2 = v_0 + 2gh\\\\v_f^2 = 0 + (2\times 9.8 \times 8)\\\\v_f^2 = 156.8\\\\v_f = \sqrt{156.8} \\\\v_f = 12.52 \ m/s

Thus, the velocity of the ball when it was caught is 12.52 m/s.

Learn more here: brainly.com/question/14582703

4 0
3 years ago
Other questions:
  • How are speed and velocity similar ?
    9·2 answers
  • Two 4.0-cm-diameter aluminum electrodes are spaced 0.50 mm apart. the electrodes are connected to a 100 v battery. part a what i
    6·1 answer
  • You are on a ParKour course. First you climb a angled wall up 9.5 meters. They you shimmy along the edge of a 3.5 meter long wal
    15·1 answer
  • For a stationary observer, when the source of a sound is moving, its pitch appears to change.
    7·2 answers
  • Do the same molecules have to be present on both sides of a chemical equation?<br> why or why not?
    5·1 answer
  • I need help!!! I need to have pictures for Absolute and Apparent Magnitude! Someone please help?!!!
    11·1 answer
  • Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1200 kg and was approaching at
    11·1 answer
  • Two cars are sitting still. Car A has a mass of 2000 kilograms. Car B has a mass of 4000 kg. If the goal is to push both cars to
    13·1 answer
  • 80 km por hora em metros por segundo
    15·1 answer
  • Which electromagnetic wave type has the largest wavelength?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!