A :-) F = ma
Given - m = 95 kg
a = 2.2 m/s^2
Solution -
F = ma
F = 95 x 2.2
F = 209
.:. The force is 209 N
You can make sure there's no change in volume by keeping
your gas in a sealed jar with no leaks. Then you can play with
the temperature and the pressure all you want, and you'll know
that the volume is constant.
For 'ideal' gases,
(pressure) times (volume) is proportional to (temperature).
And if volume is constant, then
(pressure) is proportional to (temperature) .
So if you increase the temperature from 110K to 235K,
the pressure increases to (235/110) of where it started.
(400 kPa) x (235/110) = 854.55 kPa. (rounded)
Obviously, choice-b is the right one, but
I don't know where the .46 came from.
Answer:
W = 12.96 J
Explanation:
The force acting in the direction of motion of the sand paper is the frictional force. So, we first calculate the frictional force:
F = μR
where,
F = Friction Force = ?
μ = 0.92
R = Normal Force = 2.6 N
Therefore,
F = (0.92)(2.6 N)
F = 2.4 N
Now, the displacement is given as:
d = (0.12 m)(45)
d = 5.4 m
So, the work done will be:
W = F d
W = (2.4 N)(5.4 m)
<u>W = 12.96 J</u>
shhhh hahahaha ahhhhhhhh ahhhh
Answer:
Circulatory System
Explanation:
The respiratory system works with the circulatory system to provide tis oxygen and to remove the waste products of metabolism. It also helps to regulate PH of the blood. Respiration is the sequence of events that result in the exchange of oxygen and carbon dioxide between the atmosphere and the body cells.