Answer:
The height of the cliff is 90.60 meters.
Explanation:
It is given that,
Initial horizontal speed of the stone, u = 10 m/s
Initial vertical speed of the stone, u' = 0 (as there is no motion in vertical direction)
The time taken by the stone from the top of the cliff to the bottom to be 4.3 s, t = 4.3 s
Let h is the height of the cliff. Using the second equation of motion in vertical direction to find it. It is given by :



h = 90.60 meters
So, the height of the cliff is 90.60 meters. Hence, this is the required solution.
It's a bit of a trick question, had the same one on my homework. You're given an electric field strength (1*10^5 N/C for mine), a drag force (7.25*10^-11 N) and the critical info is that it's moving with constant velocity(the particle is in equilibrium/not accelerating).
<span>All you need is F=(K*Q1*Q2)/r^2 </span>
<span>Just set F=the drag force and the electric field strength is (K*Q2)/r^2, plugging those values in gives you </span>
<span>(7.25*10^-11 N) = (1*10^5 N/C)*Q1 ---> Q1 = 7.25*10^-16 C </span>
Uranus is much much larger than Earth, so the distance from the planet's center is much much greater