Answer:
Vertical asymptotes :

Horizontal asymptote :

Step-by-step explanation:
Consider the given rational function as,

Now, to find the vertical asymptotes of the given rational function, we will first set the denominator of given rational function equal to 0 and then solve. The values at which the denominator becomes 0 gives us the vertical asyptotes of the given rational function.
Now, denominator of given rational function = g(<em>x</em>) = 2<em>x</em>²- <em>x </em>- 1
Now, to find vertical asymptotes, we will set g(<em>x</em>) = 0
∴ 2<em>x</em>² - <em>x</em> - 1 = 0
⇒2<em>x</em>² - 2<em>x</em> + <em>x</em> - 1 = 0
⇒2<em>x</em>(<em>x</em> - 1) + 1(<em>x</em> - 1) = 0
⇒(2<em>x</em> + 1)(<em>x</em> - 1) = 0
⇒2<em>x</em> + 1 = 0 or <em>x</em> - 1 = 0

So,
and
are the equations of vertical asymptotes of the given rational function.
In the given rational function, the degree of numerator i.e. f(<em>x</em>) is equal to the degree of denominator i.e. g(<em>x</em>), so the given rational function will have a horizontal asymptote that is given by,



So,
is the equation of horizontal asymptote of the given rational function.