Use the rules of logarithms and the rules of exponents.
... ln(ab) = ln(a) + ln(b)
... e^ln(a) = a
... (a^b)·(a^c) = a^(b+c)
_____
1) Use the second rule and take the antilog.
... e^ln(x) = x = e^(5.6 + ln(7.5))
... x = (e^5.6)·(e^ln(7.5)) . . . . . . use the rule of exponents
... x = 7.5·e^5.6 . . . . . . . . . . . . use the second rule of logarithms
... x ≈ 2028.2 . . . . . . . . . . . . . use your calculator (could do this after the 1st step)
2) Similar to the previous problem, except base-10 logs are involved.
... x = 10^(5.6 -log(7.5)) . . . . . take the antilog. Could evaluate now.
... = (1/7.5)·10^5.6 . . . . . . . . . . of course, 10^(-log(7.5)) = 7.5^-1 = 1/7.5
... x ≈ 53,080.96
If the original side length is "s" and the original slant height is "h", the original surface area is
.. S = (base area) +(lateral area)
.. S = s² +(1/2)*(4s)*h
.. S = s(s +2h)
Now, if we make these replacements: s ⇒ 3s, h ⇒ h/5, we have
.. S' = (3s)(3s +2h/5)
.. S' = 9s² +(6/5)s*h . . . . . . . the formula for the modified area (in terms of original dimensions)
_____
Of course, in terms of the modified dimensions, the formula is the same:
.. S' = s'(s' +2h')
5(2x-7)
Hope this helps !
Have a great day!
Answer:
5X + 8Y >= 300; intersection at (-20, 50)
Step-by-step explanation:
let t = work hours
0 < t < 30
X = time lawn mowing
Y = time babysitting.
X + Y < 30
5X + 8Y >= 300
We could solve...
X < 30 - Y
5(30 - Y) + 8Y >=300
150 - 5Y + 8Y >= 300
3Y >=150
Y >=50
then X < -20
intersection at (-20, 50)
Answer:
lol
Step-by-step explanation: