![4-x^2=x\\ x^2+x-4=0\\ \Delta=1^2-4\cdot1\cdot(-4)=1+16=17\\ x_1=\dfrac{-1-\sqrt{17}}{2}\\ x_2=\dfrac{-1+\sqrt{17}}{2}\\\\ \displaystyle V=\pi\int\limits_0^{\dfrac{-1+\sqrt{17}}{2}}(4-x^2-x)^2\,dx\\ V=\pi\int\limits_0^{\dfrac{-1+\sqrt{17}}{2}}(16-4x^2-4x-4x^2+x^4+x^3-4x+x^3+x^2)\,dx\\ V=\pi\int\limits_0^{\dfrac{-1+\sqrt{17}}{2}}(x^4+2x^3-7x^2-8x+16)\,dx\\ V=\pi \left[\dfrac{x^5}{5}+\dfrac{x^4}{2}-\dfrac{7x^3}{3}-4x^2+16x\right]_0^{\dfrac{-1+\sqrt{17}}{2}}\\ ](https://tex.z-dn.net/?f=4-x%5E2%3Dx%5C%5C%0Ax%5E2%2Bx-4%3D0%5C%5C%0A%5CDelta%3D1%5E2-4%5Ccdot1%5Ccdot%28-4%29%3D1%2B16%3D17%5C%5C%0Ax_1%3D%5Cdfrac%7B-1-%5Csqrt%7B17%7D%7D%7B2%7D%5C%5C%0Ax_2%3D%5Cdfrac%7B-1%2B%5Csqrt%7B17%7D%7D%7B2%7D%5C%5C%5C%5C%0A%5Cdisplaystyle%0AV%3D%5Cpi%5Cint%5Climits_0%5E%7B%5Cdfrac%7B-1%2B%5Csqrt%7B17%7D%7D%7B2%7D%7D%284-x%5E2-x%29%5E2%5C%2Cdx%5C%5C%0AV%3D%5Cpi%5Cint%5Climits_0%5E%7B%5Cdfrac%7B-1%2B%5Csqrt%7B17%7D%7D%7B2%7D%7D%2816-4x%5E2-4x-4x%5E2%2Bx%5E4%2Bx%5E3-4x%2Bx%5E3%2Bx%5E2%29%5C%2Cdx%5C%5C%0AV%3D%5Cpi%5Cint%5Climits_0%5E%7B%5Cdfrac%7B-1%2B%5Csqrt%7B17%7D%7D%7B2%7D%7D%28x%5E4%2B2x%5E3-7x%5E2-8x%2B16%29%5C%2Cdx%5C%5C%0AV%3D%5Cpi%20%5Cleft%5B%5Cdfrac%7Bx%5E5%7D%7B5%7D%2B%5Cdfrac%7Bx%5E4%7D%7B2%7D-%5Cdfrac%7B7x%5E3%7D%7B3%7D-4x%5E2%2B16x%5Cright%5D_0%5E%7B%5Cdfrac%7B-1%2B%5Csqrt%7B17%7D%7D%7B2%7D%7D%5C%5C%0A)
The rest of solution in the attachment.
There's a mistake in the picture
It shoud be
Answer:
toooooooooooooooo hard
Step-by-step explanation:
so so sorry
Answer:
Alternate Exterior Angles
Step-by-step explanation:
Alternate exterior angles are two angles on the opposite outer sides of two parallel lines cut by a transversal.
The two angles given, 2 and 7, are alternate exterior angles.
Hope it helps! :)
Answer:
3.85
Step-by-step explanation:
6.50 goes into 25 how many times
6.50×?=25
6.50 divided by 25 = 3.846153846
Simplify
3.85
Answer:
a.) [1, infinity)
Step-by-step explanation:
The equation is that of a parabola that opens upward with vertex (1, 1). Hence the minimum value of f(x) is 1, and all values greater than that are part of the range: [1, ∞).
_____
The "vertex form" of the equation of a parabola is ...
f(x) = a(x -h)^2 + k
The vertex is at (h, k). When a > 0, the parabola opens upward. When a < 0, the parabola opens downward. Whichever way it opens, the value k is an extreme value and the limit of the range.