The area of a rectangle is A=LW, the area of a square is A=S^2.
W=S-2 and L=2S-3
And we are told that the areas of each figure are the same.
S^2=LW, using L and W found above we have:
S^2=(2S-3)(S-2) perform indicated multiplication on right side
S^2=2S^2-4S-3S+6 combine like terms on right side
S^2=2S^2-7S+6 subtract S^2 from both sides
S^2-7S+6=0 factor:
S^2-S-6S+6=0
S(S-1)-6(S-1)=0
(S-6)(S-1)=0, since W=S-2, and W>0, S>2 so:
S=6 is the only valid value for S. Now we can find the dimensions of the rectangle...
W=S-2 and L=2S-3 given that S=6 in
W=4 in and L=9 in
So the width of the rectangle is 4 inches and the length of the rectangle is 9 inches.
Answer:
A.) gf(x) = 3x^2 + 12x + 9
B.) g'(x) = 2
Step-by-step explanation:
A.) The two given functions are:
f(x) = (x + 2)^2 and g(x) = 3(x - 1)
Open the bracket of the two functions
f(x) = (x + 2)^2
f(x) = x^2 + 2x + 2x + 4
f(x) = x^2 + 4x + 4
and
g(x) = 3(x - 1)
g(x) = 3x - 3
To find gf(x), substitute f(x) for x in g(x)
gf(x) = 3( x^2 + 4x + 4 ) - 3
gf(x) = 3x^2 + 12x + 12 - 3
gf(x) = 3x^2 + 12x + 9
Where
a = 3, b = 12, c = 9
B.) To find g '(12), you must first find the inverse function of g(x) that is g'(x)
To find g'(x), let g(x) be equal to y. Then, interchange y and x for each other and make y the subject of formula
Y = 3x + 3
X = 3y + 3
Make y the subject of formula
3y = x - 3
Y = x/3 - 3/3
Y = x/3 - 1
Therefore, g'(x) = x/3 - 1
For g'(12), substitute 12 for x in g' (x)
g'(x) = 12/4 - 1
g'(x) = 3 - 1
g'(x) = 2.
Answer:
bbhwhehwyayyquqysyegegegsgsgsgsusus
Step-by-step explanation:
vgsgahah z z zb
Answer:
y=27 when x=2
Step-by-step explanation:
y varies inversely as the cube of x
y=k(1/X^3)
y=1 when x=6
y=k(1/X^3)
1=k(1/6^3)
1=k(1/216)
k=1÷1/216
K=1×216/1
k=216
find y when x=2
y=k(1/X^3)
y=216(1/2^3)
y=216(1/8)
y=216/8
y=27