<span>12.3
Volume function: v(x) = ((18-x)(x-1)^2)/(4pi)
Since the perimeter of the piece of sheet metal is 36, the height of the tube created will be 36/2 - x = 18-x.
The volume of the tube will be the area of the cross section multiplied by the height. The area of the cross section will be pi r^2 and r will be (x-1)/(2pi). So the volume of the tube is
v(x) = (18-x)pi((x-1)/(2pi))^2
v(x) = (18-x)pi((x-1)^2/(4pi^2))
v(x) = ((18-x)(x-1)^2)/(4pi)
The maximum volume will happen when the value of the first derivative is zero. So calculate the first derivative:
v'(x) = (x-1)(3x - 37) / (4pi)
Convert to quadratic equation.
(3x^2 - 40x + 37)/(4pi) = 0
3/(4pi)x^2 - (10/pi)x + 37/(4pi) = 0
Now calculate the roots using the quadratic formula with a = 3/(4pi), b = -10/pi, and c = 37/(4pi)
The roots occur at x = 1 and x = 12 1/3. There are the points where the slope of the volume equation is zero. The root of 1 happens just as the volume of the tube is 0. So the root of 12 1/3 is the value you want where the volume of the tube is maximized. So the answer to the nearest tenth is 12.3</span>
The answer would be (-1,2)
The rule is minus 5.
So 20, 15, 10, 5, 0, -5
S=Selling price 135
V=Variable cost 75
F=Fixed cost 3300
Let quantity be Q
The formula to break even is
135Q-75Q-3300=0
Solve for Q
60Q-3300=0
60Q=3300
Q=3300/60
Q=50
So the store must sell 50 bicycles to break even
Hope it helps!