Answer:
Jack's final bank account amount will be $54,782.50, <em>earning</em> <u>$7,459.31</u> in <em>interest</em>.
General Formulas and Concepts:
<u>Algebra I</u>
Compounded Interest Rate Formula: 
- <em>A</em> is final amount
- <em>P</em> is principle amount
- <em>r</em> is rate
- <em>n</em> is compounded rate
- <em>t</em> is time
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify given variables</em>.
<em>P</em> = $47,323.15
<em>r</em> = 0.05
<em>n</em> = 1
<em>t</em> = 3
<u>Step 2: Find Interest</u>
- [Compounded Interest Rate Formula] Substitute in variables:

- Evaluate:

∴ Jack will <em>gain</em> $7,459.31 and have a net balance of $54,782.50.
---
Learn more about Algebra I: brainly.com/question/27710663
---
Topic: Algebra I
Answer: X=-7/2
y=-11
Step-by-step explanation:
4x+3=2x-4
4x-2x=-4-3
2x=-7
x=-7/2
y=-7/2*2-4
y=-7-4=-11
Answer:
slightly confused on the wording if he got back 3/4 from 16.5 then he earned back 12.375 points
if -16.5 is the 1/4 he didnt get back then he had 66 points
Step-by-step explanation:
Answer:
9
Step-by-step explanation:
Let the two perfect cubes be x and y where x > y.
According to the given conditions:
![{x}^{3} - {y}^{3} = 386...(1) \\ y = 7...(2) \\ plug \: y = 7 \: in \: equation \: (1) \\ {x}^{3} - {7}^{3} = 386 \\ {x}^{3} - 343 = 386 \\ {x}^{3} = 343 + 386 \\ {x}^{3} = 343 + 386 \\ {x}^{3} = 729 \\ x = \sqrt[3]{729} \\ x = 9](https://tex.z-dn.net/?f=%20%7Bx%7D%5E%7B3%7D%20%20-%20%20%7By%7D%5E%7B3%7D%20%20%3D%20386...%281%29%20%5C%5C%20y%20%3D%207...%282%29%20%5C%5C%20plug%20%5C%3A%20y%20%3D%207%20%5C%3A%20in%20%5C%3A%20equation%20%5C%3A%20%281%29%20%5C%5C%20%20%7Bx%7D%5E%7B3%7D%20%20-%20%20%7B7%7D%5E%7B3%7D%20%20%3D%20386%20%5C%5C%20%7Bx%7D%5E%7B3%7D%20%20-%20%20343%20%3D%20386%20%5C%5C%20%7Bx%7D%5E%7B3%7D%20%20%20%20%20%3D%20343%20%20%2B%20%20386%20%5C%5C%20%7Bx%7D%5E%7B3%7D%20%20%20%20%20%3D%20343%20%20%2B%20%20386%20%5C%5C%20%7Bx%7D%5E%7B3%7D%20%20%20%3D%20729%20%5C%5C%20x%20%3D%20%20%5Csqrt%5B3%5D%7B729%7D%20%20%5C%5C%20x%20%3D%209)
Thus the cube root of the larger number is 9.