=(140+4) / 8
=(144/8) + (4/8)
=18 + 2
=<span>20</span>
Answer:
5/7
Step-by-step explanation:
Answer: 0.0793
Step-by-step explanation:
Let the IQ of the educated adults be X then;
Assume X follows a normal distribution with mean 118 and standard deviation of 20.
This is a sampling question with sample size, n =200
To find the probability that the sample mean IQ is greater than 120:
P(X > 120) = 1 - P(X < 120)
Standardize the mean IQ using the sampling formula : Z = (X - μ) / σ/sqrt n
Where; X = sample mean IQ; μ =population mean IQ; σ = population standard deviation and n = sample size
Therefore, P(X>120) = 1 - P(Z < (120 - 118)/20/sqrt 200)
= 1 - P(Z< 1.41)
The P(Z<1.41) can then be obtained from the Z tables and the value is 0.9207
Thus; P(X< 120) = 1 - 0.9207
= 0.0793
The point is not a solution to the equation of the line.
Hope this helps!
If we let
x as the distance traveled by the boat
y as the distance between the boat and the lighthouse.
Then, we have:
tan 18°33' = 200 / (x + y)
and
tan 51°33' = 200 / y
Solving for y in the second equation:
y = 200 / tan 51°33'
Rearranging the first equation and substituting y
x = 200 / tan 18°33' - 200 / tan 55°33'
x = 458.81 ft
Therefore, the boat traveled 458.81 ft before it stopped.