Answer: 1 < x < 2
Step-by-step explanation:
0.5, you would divide 0.375 to cancel out the height and then divide 0.75 (the new volume after you divided 0.375 by the height) by 1.5 to cancel out the x
Since g(6)=6, and both functions are continuous, we have:
![\lim_{x \to 6} [3f(x)+f(x)g(x)] = 45\\\\\lim_{x \to 6} [3f(x)+6f(x)] = 45\\\\lim_{x \to 6} [9f(x)] = 45\\\\9\cdot lim_{x \to 6} f(x) = 45\\\\lim_{x \to 6} f(x)=5](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%206%7D%20%5B3f%28x%29%2Bf%28x%29g%28x%29%5D%20%3D%2045%5C%5C%5C%5C%5Clim_%7Bx%20%5Cto%206%7D%20%5B3f%28x%29%2B6f%28x%29%5D%20%3D%2045%5C%5C%5C%5Clim_%7Bx%20%5Cto%206%7D%20%5B9f%28x%29%5D%20%3D%2045%5C%5C%5C%5C9%5Ccdot%20lim_%7Bx%20%5Cto%206%7D%20f%28x%29%20%3D%2045%5C%5C%5C%5Clim_%7Bx%20%5Cto%206%7D%20f%28x%29%3D5)
if a function is continuous at a point c, then

,
that is, in a c ∈ a continuous interval, f(c) and the limit of f as x approaches c are the same.
Thus, since

, f(6) = 5
Answer: 5
Answer:

Step-by-step explanation:
<u><em>The complete question is</em></u>
A chef bought $17.01 worth of ribs and chicken. Ribs cost 1.89 per pound and chicken costs 0.90 per pound. The equation 0.90 +1.89r = 17.01 represents the relationship between the quantities in this situation.
Show that each of the following equations is equivalent to 0.9c + 1.89r = 17.01.
Then, explain when it might be helpful to write the equation in these forms.
a. c=18.9-2.1r. b. r= -10÷2c+9
we have that
The linear equation in standard form is

where
c is the pounds of chicken
r is the pounds of ribs
step 1
Solve the equation for c
That means ----> isolate the variable c
Subtract 1.89r both sides

Divide by 0.90 both sides

Simplify

step 2
Solve the equation for r
That means ----> isolate the variable r
Subtract 0.90c both sides

Divide by 1.89 both sides

Simplify

therefore
The equation
is equivalent
The equation is helpful, because if I want to know the number of pounds of chicken, I just need to substitute the number of pounds of ribs in the equation to get the result.