Answer:
a) 81.5%
b) 95%
c) 75%
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 266 days
Standard Deviation, σ = 15 days
We are given that the distribution of length of human pregnancies is a bell shaped distribution that is a normal distribution.
Formula:
![z_{score} = \displaystyle\frac{x-\mu}{\sigma}](https://tex.z-dn.net/?f=z_%7Bscore%7D%20%3D%20%5Cdisplaystyle%5Cfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D)
a) P(between 236 and 281 days)
![P(236 \leq x \leq 281)\\\\= P(\displaystyle\frac{236 - 266}{15} \leq z \leq \displaystyle\frac{281-266}{15})\\\\= P(-2 \leq z \leq 1)\\\\= P(z \leq 1) - P(z < -2)\\= 0.838 - 0.023 = 0.815 = 81.5\%](https://tex.z-dn.net/?f=P%28236%20%5Cleq%20x%20%5Cleq%20281%29%5C%5C%5C%5C%3D%20P%28%5Cdisplaystyle%5Cfrac%7B236%20-%20266%7D%7B15%7D%20%5Cleq%20z%20%5Cleq%20%5Cdisplaystyle%5Cfrac%7B281-266%7D%7B15%7D%29%5C%5C%5C%5C%3D%20P%28-2%20%5Cleq%20z%20%5Cleq%201%29%5C%5C%5C%5C%3D%20P%28z%20%5Cleq%201%29%20-%20P%28z%20%3C%20-2%29%5C%5C%3D%200.838%20-%200.023%20%3D%200.815%20%3D%2081.5%5C%25)
b) a) P(last between 236 and 296)
![P(236 \leq x \leq 281)\\\\= P(\displaystyle\frac{236 - 266}{15} \leq z \leq \displaystyle\frac{296-266}{15})\\\\= P(-2 \leq z \leq 2)\\\\= P(z \leq 2) - P(z < -2)\\= 0.973 - 0.023 = 0.95 = 95\%](https://tex.z-dn.net/?f=P%28236%20%5Cleq%20x%20%5Cleq%20281%29%5C%5C%5C%5C%3D%20P%28%5Cdisplaystyle%5Cfrac%7B236%20-%20266%7D%7B15%7D%20%5Cleq%20z%20%5Cleq%20%5Cdisplaystyle%5Cfrac%7B296-266%7D%7B15%7D%29%5C%5C%5C%5C%3D%20P%28-2%20%5Cleq%20z%20%5Cleq%202%29%5C%5C%5C%5C%3D%20P%28z%20%5Cleq%202%29%20-%20P%28z%20%3C%20-2%29%5C%5C%3D%200.973%20-%200.023%20%3D%200.95%20%3D%2095%5C%25)
c) If the data is not normally distributed.
Then, according to Chebyshev's theorem, at least
data lies within k standard deviation of mean.
For k = 2
![1-\dfrac{1}{(2)^2} = 75\%](https://tex.z-dn.net/?f=1-%5Cdfrac%7B1%7D%7B%282%29%5E2%7D%20%3D%2075%5C%25)
Atleast 75% of data lies within two standard deviation for a non normal data.
Thus, atleast 75% of pregnancies last between 236 and 296 days approximately.