1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
leonid [27]
3 years ago
8

Is it true that the order when dividing 3 real numbers does not affect the answer

Mathematics
1 answer:
Jobisdone [24]3 years ago
8 0


No, it is not true

Lets do an example:

4 divided by 2 divided by 1 equals 2, while 2 divided by 1 divided by 4 equals 0.5

You might be interested in
Wich data set could be repersented by the blox plot shown down below?<br><br><br>pick a b c or d
netineya [11]

Answer:

Its A.

Step-by-step explanation:

Can u stop reporting my answers!!??

8 0
2 years ago
Read 2 more answers
What is the value of 5 2/3 +(-3 5/6)+(-2/3)? ​
algol [13]

Answer:  I got 2/9 but im not sure if its right

Step-by-step explanation:

5 0
3 years ago
What is the measure of angle x?<br> Enter your answer in the box.<br> x =<br> UwU PLZ help
MissTica
I think it might be 43° because since the line is going through the middle, it would be 180-47-90=43 (the 90 came from the right angle)

hope this helps! :)
7 0
3 years ago
Read 2 more answers
If P is the circumcenter of triangle ABC, find each measure.
seropon [69]

Answer:

Step-by-step explanation:

Hhhh

5 0
3 years ago
Read 2 more answers
Find the area of the following<br> kite:<br> A = [?] m²<br> 40 m<br> 16 m<br> 16 m<br> 6 m
Rama09 [41]

Answer:

Area_{kite}=736m^2

Step-by-step explanation:

There are a few methods to find the area of this figure:

1. kite area formula

2. 2 triangles (one top, one bottom)

3. 2 triangles (one left, one right)

4. 4 separate right triangles.

<h3><u>Option 1:  The kite area formula</u></h3>

Recall the formula for area of a kite:  Area_{kite}=\frac{1}{2} d_{1}d_{2} where d1 and d2 are the lengths of the diagonals of the kite ("diagonals" are segments that connect non-adjacent vertices -- in a quadrilateral, vertices that are across from each other).

If you've forgotten why that is the formula for the area of a kite, observe the attached diagram: note that the kite (shaded in) is half of the area of the rectangle that surrounds the kite (visualize the 4 smaller rectangles, and observe that the shaded portion is half of each, and thus the area of the kite is half the area of the large rectangle).

The area of a rectangle is Area_{rectangle}=bh, sometimes written as Area_{rectangle}=bh, where w is the width, and h is the height of the rectangle.

In the diagram, notice that the width and height are each just the diagonals of the kite.  So, the <u>Area of the kite</u> is <u>half of the area of that surrounding rectangle</u> ... the rectangle with sides the lengths of the kite's diagonals.Hence, Area_{kite}=\frac{1}{2} d_{1}d_{2}

For our situation, each of the diagonals is already broken up into two parts from the intersection of the diagonals.  To find the full length of the diagonal, add each part together:

For the horizontal diagonal (which I'll call d1): d_{1}=40m+6m=46m

For the vertical diagonal (which I'll call d2): d_{2}=16m+16m=32m

Substituting back into the formula for the area of a kite:

Area_{kite}=\frac{1}{2} d_{1}d_{2}\\Area_{kite}=\frac{1}{2} (46m)(32m)\\Area_{kite}=736m^2

<h3><u /></h3><h3><u>Option 2:  The sum of the parts (version 1)</u></h3>

If one doesn't remember the formula for the area of a kite, and can't remember how to build it, the given shape could be visualized as 2 separate triangles, the given shape could be visualized as 2 separate triangles (one on top; one on bottom).

Visualizing it in this way produces two congruent triangles.  Since the upper and lower triangles are congruent, they have the same area, and thus the area of the kite is double the area of the upper triangle.

Recall the formula for area of a triangle:  Area_{triangle}=\frac{1}{2} bh where b is the base of a triangle, and h is the height of the triangle <em>(length of a perpendicular line segment between a point on the line containing the base, and the non-colinear vertex)</em>.  Since all kites have diagonals that are perpendicular to each other (as already indicated in the diagram), the height is already given (16m).

The base of the upper triangle, is the sum of the two segments that compose it:  b=40m+6m=46m

<u>Finding the Area of the upper triangle</u>Area_{\text{upper }triangle}=\frac{1}{2} (46m)(16m) = 368m^2

<u>Finding the Area of the kite</u>

Area_{kite}=2*(368m^2)

Area_{kite}=736m^2

<h3><u>Option 3:  The sum of the parts (version 2)</u></h3>

The given shape could be visualized as 2 separate triangles (one on the left; one on the right).  Each triangle has its own area, and the sum of both triangle areas is the area of the kite.

<em>Note:  In this visualization, the two triangles are not congruent, so it is not possible to  double one of their areas to find the area of the kite.</em>

The base of the left triangle is the vertical line segment the is the vertical diagonal of the kite.  We'll need to add together the two segments that compose it:  b=16m+16m=32m.  This is also the base of the triangle on the right.

<u>Finding the Area of left and right triangles</u>

Area_{\text{left }triangle}=\frac{1}{2} (32m)(40m) = 640m^2

The base of the right triangle is the same length as the left triangle: Area_{\text{right }triangle}=\frac{1}{2} (32m)(6m) = 96m^2

<u>Finding the Area of the kite</u>

Area_{kite}=(640m^2)+(96m^2)

Area_{kite}=736m^2

<h3><u>Option 4:  The sum of the parts (version 3)</u></h3>

If you don't happen to see those composite triangles from option 2 or 3 when you're working this out on a particular problem, the given shape could be visualized as 4 separate right triangles, and we're still given enough information in this problem to solve it this way.

<u>Calculating the area of the 4 right triangles</u>

Area_{\text{upper left }triangle}=\frac{1}{2} (40m)(16m) = 320m^2

Area_{\text{upper right }triangle}=\frac{1}{2} (6m)(16m) = 48m^2

Area_{\text{lower left }triangle}=\frac{1}{2} (40m)(16m) = 320m^2

Area_{\text{lower right }triangle}=\frac{1}{2} (6m)(16m) = 48m^2

<u>Calculating the area of the kite</u>

Area_{kite}=(320m^2)+(48m^2)+(320m^2)+(48m^2)

Area_{kite}=736m^2

8 0
2 years ago
Other questions:
  • How can I explain with mental math
    9·1 answer
  • some kangaroos can jump over 30 feet in one jump! if a kangaroo could jump like that 150 times in the row, how much farther woul
    9·1 answer
  • Lynn bought a box of 45 cards for $42.75 how much did each card cost?
    11·1 answer
  • How many 5mL doses are in a 5fl oz bottle of antibiotic preparation
    6·1 answer
  • Order the numbers from least to greatest 3/8, 19/24, 2/3<br>EASY
    14·1 answer
  • I need 1-3 help me!!
    10·1 answer
  • The level of dissolved oxygen (DO) in a stream or river is an important indicator of the water's ability to support aquatic life
    12·1 answer
  • In ΔEFG, the measure of ∠G=90°, the measure of ∠E=78°, and GE = 33 feet. Find the length of FG to the nearest tenth of a foot.
    10·1 answer
  • Determine the value of x in the diagram?<br><br> A.32<br> B.10<br> C.20<br> D.16
    10·2 answers
  • Which of the following is true of the numbers 4 and 10?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!