Answer: 1) (-2,0)  
2) (0,2)
Step-by-step explanation:
 
        
                    
             
        
        
        
Answer:
Rational
Step-by-step explanation:
 
        
                    
             
        
        
        
<span>y = slope*x + y-intercept;
</span>We can rewrite our equation in a shorter form : y = mx + b;
y = x + 2 ; m1 = 2 and b1 = 2;
y = -x + 6; m2 = -1 and b2 = 6;
<span>Set the two equations for y equal to each other:
</span>x + 2 = -x + 6 ;
<span>Solve for x. This will be the x-coordinate for the point of intersection:
</span>2x = 4;
x = 2;
<span>Use this x-coordinate and plug it into either of the original equations for the lines and solve for y. This will be the y-coordinate of the point of intersection:
</span>y = 2 + 2 ;
y = 4;
<span>The point of intersection for these two lines is (2 , 4).</span>
        
             
        
        
        
Step-by-step explanation:
if there is nothing missing, we have
x + 25/-8 = -6
in order to compare or add or subtract fractions, we need to bring them all to the same denominator (bottom part).
remember, integer numbers are fractions too. like here
-6 = -6/1
25/-8 = -25/8
so, how can we bring -6/1 to .../8 ?
by multiplying 1 by 8.
but we cannot multiply only the denominator by 8. otherwise we would suddenly have
-6/8
and is -6/8 = -6/1 ? no, certainly not.
to keep the original value of the fraction we have to do the same multiplication also with the numerator (top part).
so, we actually do
-6/1 × 8/8 = -48/8
with this little trick we have now .../8 to operate with, and our transformed fraction has still the same value
-6/1 = -48/8 indeed. 
so, we have
x + -25/8 = -48/8
x - 25/8 = -48/8
x = -48/8 + 25/8 = -23/8
 
        
             
        
        
        
Yessss that should be correct