Answer:
p=16
Step-by-step explanation:
To solve for r, you would start by subtracting p from both sides.
2m - p = -q/r
Multiply everything by r.
2mr - pr = -q
Factor r out of the left side of the equation.
r(2m - p) = -q
Divide both sides by (2m - p).
r =
.
![\bf \textit{difference and sum of cubes} \\\\ a^3+b^3 = (a+b)(a^2-ab+b^2) \\\\ a^3-b^3 = (a-b)(a^2+ab+b^2) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} 729=27^2\\ \qquad (3^3)^2\\ 1000=10^3 \end{cases}\implies 729^{15}+1000\implies ((3^3)^2)^{15}+10^3 \\\\\\ ((3^2)^{15})^3+10^3\implies (3^{30})^3+10^3\implies (3^{30}+10)~~[(3^{30})^2-(3^{30})(10)+10^2] \\\\\\ (3^{30})^3+10^3\implies (3^{30}+10)~~~~[(3^{60})-(3^{30})(10)+10^2]](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bdifference%20and%20sum%20of%20cubes%7D%20%5C%5C%5C%5C%20a%5E3%2Bb%5E3%20%3D%20%28a%2Bb%29%28a%5E2-ab%2Bb%5E2%29%20%5C%5C%5C%5C%20a%5E3-b%5E3%20%3D%20%28a-b%29%28a%5E2%2Bab%2Bb%5E2%29%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20729%3D27%5E2%5C%5C%20%5Cqquad%20%283%5E3%29%5E2%5C%5C%201000%3D10%5E3%20%5Cend%7Bcases%7D%5Cimplies%20729%5E%7B15%7D%2B1000%5Cimplies%20%28%283%5E3%29%5E2%29%5E%7B15%7D%2B10%5E3%20%5C%5C%5C%5C%5C%5C%20%28%283%5E2%29%5E%7B15%7D%29%5E3%2B10%5E3%5Cimplies%20%283%5E%7B30%7D%29%5E3%2B10%5E3%5Cimplies%20%283%5E%7B30%7D%2B10%29~~%5B%283%5E%7B30%7D%29%5E2-%283%5E%7B30%7D%29%2810%29%2B10%5E2%5D%20%5C%5C%5C%5C%5C%5C%20%283%5E%7B30%7D%29%5E3%2B10%5E3%5Cimplies%20%283%5E%7B30%7D%2B10%29~~~~%5B%283%5E%7B60%7D%29-%283%5E%7B30%7D%29%2810%29%2B10%5E2%5D)
now, we could expand them, but there's no need, since it's just factoring.
Answer:
Two angles and the non-included side of one triangle are congruent to the corresponding parts of another triangle. Which congruence theorem can be used to prove that the triangles are congruent? Two sides and the included angle of one triangle are congruent to the corresponding parts of another triangle.