<span>As it is uniform circular motion therefore speed is constant. Therefore we can rule out option B. Also in circular motion the direction of velocity vector changes therefore velocity can't be constant. Therefore option B is incorrect as well. Also centripetal acceleration is always towards the center so option D is wrong as well.
That implies
option A is correct.</span>
Answer:
Explanation:
We shall apply law of conservation of momentum to know velocity after collision . Let it be v .
total momentum before collision = total momentum after collision
15 x 1.5 - 12 x .75 = ( 15 + 12 ) v
v = .5 m /s
kinetic energy before collision
1/2 x 15 x 1.5² + 1/2 x 12 x .75²
= 16.875 + 3.375
= 20.25 J
kinetic energy after collision
= 1/2 x ( 15 + 12 ) x .5²
= 3.375 J
Loss of energy = 16.875 J
This energy appear as heat and sound energy that is produced during collision .
Answer:
489.19m
Explanation:
To find the minimum distance you first calculate the time in which the teacher stops:
however, the reaction of the teacher is 0.31s later, then you use
t=13.8-0.31s=13.49s
during this time the camper has traveled a distance of:
(1)
Next you calculate the distance that teacher has traveled for 13.6s:
(2)
The minimum distance between the driver and the camper will be the difference between (2) and (1):
Answer:
61440 peaks
Explanation:
A hertz represents one cycle for every second:
So if a wave have frequency of 2Hz for example, this means the wave does two cycles per second.
Normally the waves are represented by cosine or sine waves. These kind of waves have two peaks in each cycle, one positive and one negative. With this in mind, let's calculate how many peaks of the wave pass each minute.
A minute has 60 seconds, hence:
And we know already that every cycle has two peaks, so: