C.Earth is the largest and most dense of the terrestrial planets
Part 1)
here we know that supply took 10 s to reach the ground
so here we will have




Part 2)
Here all the supply covered horizontal distance of 650 m in 10 s interval of time
so here we can say



On Earth, a cannonball with a mass of 20 kg would weigh 196 Newtons.
With the formula F=mg, where F is the weight in Newtons, m is the mass, and g is the acceleration due to gravity on the Earth which is 9.8m/s^2.
F=20kg x 9.8m/s^2= 196 Newtons
BUT on the moon, acceleration due to gravity is 1.6 m/s^2,
so F=mg=20kgx1.6m/s^2= 32 N
When Trinity pulls on the rope with her weight, Newton's Third Law of Motion tells us that the rope will <u>"pull back".</u>
Newton's third law of motion expresses that, at whatever point a first question applies a power on a second object, the first object encounters a power meet in extent however inverse in heading to the power that it applies.
Newton's third law of movement reveals to us that powers dependably happen in sets, and one question can't apply a power on another without encountering a similar quality power consequently. We once in a while allude to these power matches as "action-reaction" sets, where the power applied is the activity, and the power experienced in kind is the response (despite the fact that which will be which relies upon your perspective).