Answer:

Explanation:
Given data
length=100mm
Diameter=5mm
Thermal conductivity=5 W/m.K
Power=50 W
Temperature=25°C
The temperature of heater surface follows from the rate equation written as:

Where S can be estimated from the conduction shape factor for a vertical cylinder in semi infinite medium

Substitute the given values
![S=\frac{2\pi (0.1m)}{ln[\frac{4*0.1m}{0.005m} ]}\\ S=0.143m](https://tex.z-dn.net/?f=S%3D%5Cfrac%7B2%5Cpi%20%280.1m%29%7D%7Bln%5B%5Cfrac%7B4%2A0.1m%7D%7B0.005m%7D%20%5D%7D%5C%5C%20S%3D0.143m)
The temperature of heater is then:

The temperature reached by the heater when dissipating 50 W with the surface of the block at a temperature of 25°C.

Answer:
<em>When a balloon deflates air moves out of the balloon </em><em>because the pressure inside the balloon is higher than the pressure outside the balloon.</em>
Explanation:
An inflated balloon has a high pressure region on its inside. Gases always move from a region of high pressure to a region of low pressure. When a balloon is inflated its membrane stretches making it even more porous.
The gas molecules inside the balloon easily diffuse out through this membrane. The diffusion rate may differ depending on the type of gas filled inside the balloon and the material of the balloon. For example helium balloon deflates faster than common air balloon.
This is because helium is a light element and can escape easier than gases like nitrogen and oxygen through the porous membrane of the balloon.
I think the answer would be T<span>ransverse, Longitudinal, & Surface waves.
</span>
wavelength = d / number of Oscillation
this implies that wavelength = 30/3= 10
number of wavelengths = 10