W, because as time is moving up at a consistent rate the speed is as well, creating the straight line.
Answer:
c. dioptre that's the answer.
Answer:
r = 0.02 m
Explanation:
from the question we have :
speed = 1 rps = 1x 60 = 60 rpm
coefficient of friction (μ) = 0.1
acceleration due to gravity (g) = 9.8 m/s^{2}
maximum distance without falling off (r) = ?
to get how far from the center of the disk the coin can be placed without having to slip off we equate the formula for the centrifugal force with the frictional force on the turntable force
mv^2 / r = m x g x μ
v^2 / r = g x μ .......equation 1
where
velocity (v) = angular speed (rads/seconds) x radius
angular speed (rads/seconds) = (\frac{2π}{60} ) x rpm
angular speed (rads/seconds) = (\frac{2 x π}{60} ) x 60 = 6.28 rads/ seconds
now
velocity = 6.28 x r = 6.28 r
now substituting the value of velocity into equation 1
v^2 / r = g x μ
(6.28r)^2 / r = 9.8 x 0.1
39.5 x r = 0.98
r = 0.02 m
Answer:
C. The decrease in speed as the wave approaches shore.
Explanation:
The waves break when approaching the shore because the depth decreases. Thus, the wave travels more slowly and increases its height. There comes a time when the part of the wave on the surface travels faster than the one that travels under water, the ridge destabilizes and falls against the ground.
The mathematical and proportional relationship between mL and
said us that
is equivalent to 1mL.
If the density is considered as the amount of mass per unit volume we will have to

here,
m = mass
V = Volume
Replacing we have that


As
we have that the density in g/mL is,
