Answer:
the probability that a sample of 4 bags will have a mean weight less than 9.8 pounds is 0.05
Step-by-step explanation:
Given the data in the question;
μ_x = 10 pound bags
standard deviation s_x = 0.24 pounds
sample size n = 4
The bag weights are normally distributed so;
p( x' less than 9.8 ) will be;
p( (x'-μ_x' / s_x') < (9.8-μ_x' / s_x') )
we know that;
μ_x' = μ_x = 10
and s_x' = s_x/√n = 0.24/√4
so; we substitute
p( z < ( (9.8 - 10) / (0.24/√4) )
p( z < -0.2 / 0.12 )
p( z < -1.67 )
{ From z-table }
⇒ p( z < -1.67 ) = 0.0475 ≈ 0.05
Therefore, the probability that a sample of 4 bags will have a mean weight less than 9.8 pounds is 0.05
Answer:
Step-by-step explanation:
Their point of intersection, assuming there is one, will be somewhere on the line y = x. This line, y = x, is the line of symmetry between a function and its inverse. So if the two do in fact intersect, it will be at some point on that line
I think it’s C
Sorry if it’s wrong
Answer:
Step-by-step explanation:
1. Find two numbers that add to make the coefficient of x (in this case, -5) and that multiply to make the constant term multiplied by the coefficient of x^2 (in this case, -2 x 3 = -6)
Two numbers that work are -6 and +1
-6 x +1 = -6
-6 + -1 = -5
2. Split the middle term into the two numbers that you found.
3x^2 -6x +x -2 = 0
I've put the -6 on the left side because in our next step, when we factorise, it will be easier than having the numbers the other way around.
3. Factorise the left side by taking out common factors from each pair. The pairs I'm talking about here are '3x^2 and -6x', and 'x and -2'
3x (x-2) +1 (x-2) = 0
4. You now have two numbers both being multiplied by the term x-2. We can rearrange this equation to give us two brackets being multiplied by each other.
(3x + 1) (x-2) = 0
5. According to the Null Factor Law, if two terms are multiplied together and the result is 0, then one of those terms must be 0. Make both terms equal to 0 and solve each for x.
3x + 1 = 0 x-2 = 0
3x = -1 x = 2
x = -1/3
6. The solutions to this equation are x = 2 and x = -1/3