The another way to represent the same line, for solving
will be: 
<u><em>Explanation</em></u>
Given equation of the line is: 
"Solving
" means <u>we need to get</u>
<u>alone in left side.</u> So, we will eliminate all other terms except
from the left side.
First we will <u>subtract 2x </u>from both sides. So, we will get......

Now, we will <u>divide both sides by 3</u> for getting
alone. So.....

Thus, the another way to represent the same line, for solving
will be: 
Answer:
For a polynomial of the form ax2+bx+c a x 2 + b x + c , rewrite the middle term as a sum of two terms whose product is a⋅c=2⋅−2=−4 a ⋅ c = 2 ⋅ - 2 = - 4 and whose sum is b=−3 b = - 3 . Factor −3 - 3 out of −3x - 3 x .
Step-by-step explanation:
Answer:
We want to find:
![\lim_{n \to \infty} \frac{\sqrt[n]{n!} }{n}](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7Bn%21%7D%20%7D%7Bn%7D)
Here we can use Stirling's approximation, which says that for large values of n, we get:

Because here we are taking the limit when n tends to infinity, we can use this approximation.
Then we get.
![\lim_{n \to \infty} \frac{\sqrt[n]{n!} }{n} = \lim_{n \to \infty} \frac{\sqrt[n]{\sqrt{2*\pi*n} *(\frac{n}{e} )^n} }{n} = \lim_{n \to \infty} \frac{n}{e*n} *\sqrt[2*n]{2*\pi*n}](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7Bn%21%7D%20%7D%7Bn%7D%20%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7B%5Csqrt%7B2%2A%5Cpi%2An%7D%20%2A%28%5Cfrac%7Bn%7D%7Be%7D%20%29%5En%7D%20%7D%7Bn%7D%20%3D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7Bn%7D%7Be%2An%7D%20%2A%5Csqrt%5B2%2An%5D%7B2%2A%5Cpi%2An%7D)
Now we can just simplify this, so we get:
![\lim_{n \to \infty} \frac{1}{e} *\sqrt[2*n]{2*\pi*n} \\](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B1%7D%7Be%7D%20%2A%5Csqrt%5B2%2An%5D%7B2%2A%5Cpi%2An%7D%20%5C%5C)
And we can rewrite it as:

The important part here is the exponent, as n tends to infinite, the exponent tends to zero.
Thus:

Solution: Any value for a variable that makes the equation true.
Reciprocal: Focuses on the use of multiplication and division
Coefficient: A number that is multiplied by a variable in an algebraic expression is a coefficient
Term: A term of an algebraic expression is a number, variable, or product of numbers and variables
Base: The base of a power is the factor that is multiplied repeatedly in the power.
Hope this helps, and have a great day!