Answer:
5x
Step-by-step explanation:
you would add the numbers like this 2+3 and that equals 5 but you have to keep the X because theres not another number to combine the 2x with
Answer:
?
Step-by-step explanation:
Answer: 06.45
Explanation: For this problem, it is essential to know that there are 24 hours in a day. With that said, we take our starting time of 16.45 and since we want to know what time it is 14 ahead (addition), we add the two numbers together.
16.45 + 14 = 30.45
Since there are only 24 hours in a day, and we have exceeded that value, we subtract 24.
30.45 - 24 = 06.45
And that is the time in Brisbane.
Alternatively, you can count time in 12-hour format and convert 16.45 to 4.45 pm by subtracting 12.
Knowing your start time is 4.45pm simply add 14 to that (or change the pm to an and add 2 since 14-12=2).
You will again get 6.45am.
Cheers.
Answer:
(a) The probability of the event (<em>X</em> > 84) is 0.007.
(b) The probability of the event (<em>X</em> < 64) is 0.483.
Step-by-step explanation:
The random variable <em>X</em> follows a Poisson distribution with parameter <em>λ</em> = 64.
The probability mass function of a Poisson distribution is:

(a)
Compute the probability of the event (<em>X</em> > 84) as follows:
P (X > 84) = 1 - P (X ≤ 84)
![=1-\sum _{x=0}^{x=84}\frac{e^{-64}(64)^{x}}{x!}\\=1-[e^{-64}\sum _{x=0}^{x=84}\frac{(64)^{x}}{x!}]\\=1-[e^{-64}[\frac{(64)^{0}}{0!}+\frac{(64)^{1}}{1!}+\frac{(64)^{2}}{2!}+...+\frac{(64)^{84}}{84!}]]\\=1-0.99308\\=0.00692\\\approx0.007](https://tex.z-dn.net/?f=%3D1-%5Csum%20_%7Bx%3D0%7D%5E%7Bx%3D84%7D%5Cfrac%7Be%5E%7B-64%7D%2864%29%5E%7Bx%7D%7D%7Bx%21%7D%5C%5C%3D1-%5Be%5E%7B-64%7D%5Csum%20_%7Bx%3D0%7D%5E%7Bx%3D84%7D%5Cfrac%7B%2864%29%5E%7Bx%7D%7D%7Bx%21%7D%5D%5C%5C%3D1-%5Be%5E%7B-64%7D%5B%5Cfrac%7B%2864%29%5E%7B0%7D%7D%7B0%21%7D%2B%5Cfrac%7B%2864%29%5E%7B1%7D%7D%7B1%21%7D%2B%5Cfrac%7B%2864%29%5E%7B2%7D%7D%7B2%21%7D%2B...%2B%5Cfrac%7B%2864%29%5E%7B84%7D%7D%7B84%21%7D%5D%5D%5C%5C%3D1-0.99308%5C%5C%3D0.00692%5C%5C%5Capprox0.007)
Thus, the probability of the event (<em>X</em> > 84) is 0.007.
(b)
Compute the probability of the event (<em>X</em> < 64) as follows:
P (X < 64) = P (X = 0) + P (X = 1) + P (X = 2) + ... + P (X = 63)
![=\sum _{x=0}^{x=63}\frac{e^{-64}(64)^{x}}{x!}\\=e^{-64}\sum _{x=0}^{x=63}\frac{(64)^{x}}{x!}\\=e^{-64}[\frac{(64)^{0}}{0!}+\frac{(64)^{1}}{1!}+\frac{(64)^{2}}{2!}+...+\frac{(64)^{63}}{63!}]\\=0.48338\\\approx0.483](https://tex.z-dn.net/?f=%3D%5Csum%20_%7Bx%3D0%7D%5E%7Bx%3D63%7D%5Cfrac%7Be%5E%7B-64%7D%2864%29%5E%7Bx%7D%7D%7Bx%21%7D%5C%5C%3De%5E%7B-64%7D%5Csum%20_%7Bx%3D0%7D%5E%7Bx%3D63%7D%5Cfrac%7B%2864%29%5E%7Bx%7D%7D%7Bx%21%7D%5C%5C%3De%5E%7B-64%7D%5B%5Cfrac%7B%2864%29%5E%7B0%7D%7D%7B0%21%7D%2B%5Cfrac%7B%2864%29%5E%7B1%7D%7D%7B1%21%7D%2B%5Cfrac%7B%2864%29%5E%7B2%7D%7D%7B2%21%7D%2B...%2B%5Cfrac%7B%2864%29%5E%7B63%7D%7D%7B63%21%7D%5D%5C%5C%3D0.48338%5C%5C%5Capprox0.483)
Thus, the probability of the event (<em>X</em> < 64) is 0.483.
Answer:
AREA=100
Step-by-step explanation: