Data:
m (<span>Sample Mass) = ?
n (</span><span>Number of moles) = 0.714 mol
MM (Molar Mass) of </span>Mercury (I) Chloride (

)
Hg = 2*200.59 = 401.18 amu
Cl = 2*35.453 = 70.906 amu
----------------------------------------
Molar Mass

= 401.18 + 70.906 = 472.086 ≈ 472.09<span> amu or 472.09 g/mol
</span>
Formula:

Solving:



Answer:
By approximation would be letter
D) <span>
337.2 g</span>
Answer:
The system will change its concentration to shift to a new equilibrium position.
Explanation:
For example in the Haber Process
N2 + 3H2 ⇄ 2NH3
If the pressure is increased the process will move to the right - to have more NH3 and less of the nitrogen and hydrogen.
M(P)=3.72 g
M(P)=31 g/mol
m(Cl)=21.28 g
M(Cl)=35.5 g/mol
n(P)=m(P)/M(P)
n(P)=3.72/31=0.12 mol
n(Cl)=m(Cl)/M(Cl)
n(Cl)=21.28/35.5=0.60 mol
P : Cl = 0.12 : 0.60 = 1 : 5
PCl₅ - is the empirical formula
Answer : The 'Ag' is produced at the cathode electrode and 'Cu' is produced at anode electrode under standard conditions.
Explanation :
Galvanic cell : It is defined as a device which is used for the conversion of the chemical energy produces in a redox reaction into the electrical energy. It is also known as the voltaic cell or electrochemical cell.
In the galvanic cell, the oxidation occurs at an anode which is a negative electrode and the reduction occurs at the cathode which is a positive electrode.
We are taking the value of standard reduction potential form the standard table.
![E^0_{[Ag^{+}/Ag]}=+0.80V](https://tex.z-dn.net/?f=E%5E0_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D%3D%2B0.80V)
![E^0_{[Cu^{2+}/Cu]}=+0.34V](https://tex.z-dn.net/?f=E%5E0_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D%3D%2B0.34V)
In this cell, the component that has lower standard reduction potential gets oxidized and that is added to the anode electrode. The second forms the cathode electrode.
The balanced two-half reactions will be,
Oxidation half reaction (Anode) : 
Reduction half reaction (Cathode) : 
Thus the overall reaction will be,

From this we conclude that, 'Ag' is produced at the cathode electrode and 'Cu' is produced at anode electrode under standard conditions.
Hence, the 'Ag' is produced at the cathode electrode and 'Cu' is produced at anode electrode under standard conditions.
I think that different liquids have different freezing points because every liquid consists of different atoms and different things that make up the atom causing them to have different freezing points.