Refrigerator was what is commonly used today. We do dry foods and salt cure but that is not done on a daily basis
Answer:
The magnitude of the force will decrease
Explanation:
The gravitational force is one of the four fundamental forces of nature. It is an attractive force exerted between every object having mass.
Its magnitude is given by the equation:

where
G is the gravitational constant
m1 is the mass of the first object
m2 is the mass of the second object
r is the separation between the objects
As we see from the equation, the magnitude of the gravitational force is inversely proportional to the square of the distance between the objects:

Therefore, this means that as the distance between two bodies increases, the gravitational force will decrease.
Answer:
freezing point and melting point
Answer:
Perpendicular to the surface
Explanation:
- Electric field lines represent the direction of the electric field. The electric field lines also correspond to the direction along which the gradient of the electric potential is maximum.
- Equipotentials are lines or surfaces along which the electric potential is constant: the electric potential does not change moving along an equipotential surface.
Given the two definitions, equipotential lines are always perpendicular to the electric field lines. Therefore, in this problem, the direction of the electric field is perpendicular to the spherical equipotential surface.
Stress required to cause slip on in the direction [ 1 1 0 ] is 7.154 MPa
<u>Explanation:</u>
Given -
Stress Direction, A = [1 0 0 ]
Slip plane = [ 1 1 1]
Normal to slip plane, B = [ 1 1 1 ]
Critical stress, Sc = 2.92 MPa
Let the direction of slip on = [ 1 1 0 ]
Let Ф be the angle between A and B
cos Ф = A.B/ |A| |B| = [ 1 0 0 ] [1 1 1] / √1 √3
cos Ф = 1/√3
σ = Sc / cosФ cosλ
For slip along [ 1 1 0 ]
cos λ = [ 1 1 0 ] [ 1 0 0 ] / √2 √1
cos λ = 1/√2
Therefore,
σ = 2.92 / 1/√3 1/√2
σ = √6 X 2.92 MPa = 2.45 X 2.92 = 7.154MPa
Therefore, stress required to cause slip on in the direction [ 1 1 0 ] is 7.154MPa