Answer:

Explanation:
Recall the formula for acceleration:
, where
is final velocity,
is initial velocity, and
is elapsed time (change in velocity over this amount of time).
Let's look at our time vs velocity graph. At t=0 seconds, V=25 m/s. So her initial velocity is 25 m/s.
We want to find the acceleration during the first 5 seconds of motion. Well, looking at our graph, at t=5 seconds, isn't our velocity still 25 m/s? Therefore, final velocity is 25 m/s (for this period of 5 seconds).
We are only looking from t=0 seconds to t=5 seconds which is a total period of 5 seconds. Therefore, elapsed time is 5 seconds.
Substituting values in our formula, we have:

Alternative:
Without even worrying about plugging in numbers, let's think about what acceleration actually is! Acceleration is the change in velocity over a certain period of time. If we are not changing our velocity at all, we aren't accelerating! In the graph, we can see that we have a straight line from t=0 seconds to t=5 seconds, the interval we are worried about. This indicates that our velocity is staying the same! At t=0 seconds, we have a velocity of 25 m/s and that velocity stays the same until t=5 seconds. Even though we are moving, we haven't changed velocity, which means our average acceleration is zero!
Answer:
1) The strength of the electromagnet increases → Place a magnetic core inside the coil of wire
2) The electromagnet turns off → Turn off the battery supply
3) The poles of the electromagnet reverse → Change the direction in which the current flows
Explanation:
when current passes through a coil it behaves a an electromagnet.
Magnetic field strength is given by
B = μ N I
N is no of turns and
I is the current through coil
μ is permeability of the medium or core in the coil.
1). Magnetic core increase permeability μ so it will strengthen magnetic field:
B = <u>μ</u> N I
2). When the battery turns off current becomes zeroi.e I=0
So B = μ N * 0
⇒ B = 0
so electromagnet turns off
3). Direction of magnetic field can be determine by right hand rule, i.e curl the fingers in the direction of current, thumb will point in the direction of north pole.
so changing current direction will change direction of magnetic field.
Answer:
a) the maximum shear stress τ
the bar is 16T
/πd³
b) the angle of twist between the ends of the bar is 16tL² / πGd⁴
Explanation:
Given the data in the question, as illustrated in the image below;
d is the diameter of the prismatic bar of length AB
t is the intensity of distributed torque
(a) Determine the maximum shear stress tmax in the bar
Maximum Applied torque T_max = tL
we know that;
shear stress τ = 16T/πd³
where d is the diameter
so
τ
= 16T
/πd³
Therefore, the maximum shear stress τ
the bar is 16T
/πd³
(b) Determine the angle of twist between the ends of the bar.
let theta (
) be the angle of twist
polar moment of inertia
= πd⁴/32
now from the second image;
lets length dx which is at distance of "x" from "B"
Torque distance x
T(x) = tx
Elemental angle twist = d
= T(x)dx / G
so
d
= tx.dx / G(πd⁴/32)
d
= 32tx.dx / πGd⁴
so total angle of twist
will be;
=
=
32tx.dx / πGd⁴
= 32t / πGd⁴
= 32t / πGd⁴ [ L²/2]
= 16tL² / πGd⁴
Therefore, the angle of twist between the ends of the bar is 16tL² / πGd⁴
Answer:
D. Sounds would be harder to hear.
Explanation:
if the ear canal is blocked then the sound waves cannot reach the ear drum thus we cannot hear clearly.
hope this helps please mark as brainliest:)