Answer:
Explanation:
Give that,
Spring constant (k)=40N/m
Force applied =75N
Since the force is applied to the right, we don't know if it is compressing or stretching the spring
So let assume it compress
Using hooke's law
F=-ke
e=-F/k
Then, e=-75/40
e=-1.875m
The deformation is 1.875m.
Let assume it stretch
Using hooke's law
-F=-ke
e=F/k
Then, e=75/40
e=1.875m
The elongation is 1.875m
<span>The velocity would be 54.2 m/s
We would use the equation 1/2mv^2top+mghtop = 1/2mv^2bottom+mghbottom where m is the mass of the bobsled(which can be ignored), vtop/bottom is the velocity of the bobsled at the top or bottom, g is gravity, and htop/bottom is the height of the bobsled at the top or bottom of the hill. Since the velocity of the bobsled at the top of the hill and height at the bottom of the hill are zero, 1/2mv^2top and mghbottom will equal zero. The equation will be mghtop=1/2mv^2bottom. Thus we would solve for v.</span>
The average speed of all the molecules in an object
or sample of a substance is related to its temperature ...
and not indirectly at all.
An airplane has a large amount of kinetic energy in flight due to its large mass and fast velocity.
Answer:
Explanation:
Volume per unit time flowing will be conserved
a₁v₁ = a₂ v₂
π r₁² x v₁ = π r₂² x v₂
(0.9 x 10⁻²)² x .35 = ( .45 x 10⁻² )² x v₂
v₂ = 1.4 m / s