146.6. Nearest tenth is one place after the decimal.
Answer:(x+6)(x^2-9)
Step-by-step explanation:
Answer:
28
Step-by-step explanation:
Plug in the corresponding numbers to the corresponding variables. Note that:
m = 7
r = 8
t = 2
mr/t = (7 * 8)/2
(7 * (8/2)) = 7 * 4 = 28
28 is your answer.
~
Answer:
See below
Step-by-step explanation:
I think we had a question similar to this before. Again, let's figure out the vertical and horizontal distances figured out. The distance from C at x=8 to D at x=-5 is 13 units while the distance from C at y=-2 to D at y=9 is 11 units. (8+5=13 and 2+9=11, even though some numbers are negative, we're looking at their value in those calculations)
Next, we have to divide each distance by 4 so we can apply it to the ratio. 13/4=
and 11/4=
. Next, we need to read the question carefully. It's asking us to place the point in the ratio <em>3</em> to <em>1</em> from <em>C</em> to <em>D</em>. The point has to be closer to endpoint D because of this. Let's take each of our fractions, multiply them by 3, then add them towards the direction of endpoint D to get our answer (sorry if that sounds confusing):

Therefore, our point that partitions CD into a 3:1 ratio is (
).
I'm not sure if there was more to #5 judging by how part B was cut off. From what I can understand of part B, however, I believe that Beatriz started from endpoint D and moved towards C, the wrong direction. She found the coordinates for a 1:3 ratio point.
Also, for #6, since a square is a 2-dimensional object, the answer needs to be written showing that. The answer for #6 is 9 units^2.
Answer:
<em>The percent error of the cyclist's estimate is 5.63%</em>
Step-by-step explanation:
<u>Percentages</u>
The cyclist estimates he will bike 80 miles this week, but he really bikes 75.5 miles.
The error of his estimate in miles can be calculated as the difference between his estimate and the real outcome:
Error = 80 miles - 75.5 miles = 4.5 miles
To calculate the error as a percent, we divide that quantity by the original estimate and multiply by 100%:
Error% = 4.5 / 80 * 100 = 5.625%
Rounding to the nearest hundredth:
The percent error of the cyclist's estimate is 5.63%