Answer
Most of these techniques, including microarray analysis and reverse transcription polymerase chain reaction (RT-PCR), work by measuring mRNA levels. However, researchers can also analyze gene expression by directly measuring protein levels with a technique known as a Western blot.
Jimmy hole Tuesday went shopping on Tuesday and it’s pretty cool bcuz that’s where he got his name now go choke on a toenail
Answer:
The "short tail" dominant allele is easier to eliminate by selective breeding.
Explanation:
The only way for a recessive allele to be expressed (be visible) is when it appears as recessive homozygotic. These means the organisms need to have 2 copies of the gene. Selective breeding is based on the characteristics that one can see, so if the organism shows the "dilute" phenotype you can keep reproducing this individuals and get rid of the dominant allele.
On the other hand if you have a population with the dominant phenotype, you discard all the ones that have a recessive trait and you breed the dominant phenotype you could still get individuals with the recessive phenotype and individuals that express the dominant phenotype but are heterozygous.
You would have to teach Desean appropriate social skills.
The electrons in the outermost shell of the covalent compounds are shared by nearby atoms. As there are no free electrons for conducting electricity, the covalent compounds are perfect insulators at absolute zero. As the temperature increases, some electrons move from valence band to conduction band. This gives rise to conductivity. But as the numbers of charge carriers are very low, covalent compounds are poor conductors. On the other hand metals are good conductors cause of their bonding. Metallic bonding consists of a sea of electrons rather than discreet bonds. The free electrons are able to move freely. Since electricity and heat need electrons to move, the bonding promotes conductivity.