A median i am 100% sure and i am in 11th grade so I can’t be wrong ;)
A) The probability the golfer got zero or one hole-in-one during a single game is between 10.01% and 11.38%.
B) The probability the golfer got exactly two holes-in-one during a single game is 8.57%.
C) The probability the golfer got six holes-in-one during a single game is close to 0%.
<h2 /><h2><u>How to determine probabilities</u></h2>
Since a miniature golf player sinks a hole-in-one about 12% of the time on any given hole and is going to play 8 games at 18 holes each, to determine A) what is the probability the golfer got zero or one hole -in-one during a single game, B) what is the probability the golfer got exactly two holes-in-one during a single game, and C) what is the probability the golfer got six holes-in-one during a single game , the following calculations must be performed:
- 1 - 0.12 = 0.88
- 0.88 ^ 17 = 0.1138
- 0.88 ^ 18 = 0.1001
Therefore, the probability the golfer got zero or one hole-in-one during a single game is between 10.01% and 11.38%.
- 0.88 ^ 18 - 0.12 ^ 2 = X
- 0.0857 = X
Therefore, the probability the golfer got exactly two holes-in-one during a single game is 8.57%.
- 0.12 ^ 6 x 0.88 ^ 12 = X
- 0.0000000001 = X
Therefore, the probability the golfer got six holes-in-one during a single game is close to 0%.
Learn more about probabilities in brainly.com/question/25273534
Hyp^2 = leg1^2 + leg2^2
hyp^2 -leg1^2 = leg2^2
17^2 - 8^2 = leg2^2
leg2^2 = 289 -64
leg2^2 = 225
leg2 = 15
Answer:
512
Solution:
so first you multiply 15 times 32 and get 480 than you add 32 and get 512.