Answer:
sorry but this question does not make any sense try rewording it
Step-by-step explanation:
Hello! There are a few things that determine whether or not something is a function. In this case, to determine whether a relation is a function, we look at the domains, which are the x-coordinates, the first number of the pair. If the number occurs in the x-coordinate for more than one pair in a relation, then it's not a function. If a number only occurs as an x-coordinate once in the relation, then it's a function. In other words, they each have only one y-coordinate in the relation. For this question, the first, second, and third relations are functions. The fourth one is not a function, because the 3 has more than one y-coordinate, so it occurs as an x-coordinate more than once. Here are the answers easier to read.
1st : yes
2nd: yes
3rd: yes
4th: no
Answer:

Step-by-step explanation:
<u>Operation of Functions</u>
Given:


The sum of (f+g) (x) is:

We cannot operate with the expression inside the absolute bars, thus:

Answer:0.29
Step-by-step explanation:
An average of six cell phone thefts is reported in San Francisco per day. This means our mean value, u = 6
For poisson distribution,
P(x=r) = (e^-u×u^r)/r!
probability that four cell phones will be reported stolen tomorrow=
P(x=4)= (e^-6×6^4)/4!
= (0.00248×1296)/4×3×2×1
= 3.21408/24=
0.13392
P(x=5)= (e^-6×6^5)/5!
= (0.00248×7776)/5×4×3×2×1
= 19.28448/120
= 0.1607
probability that four or five cell phones will be reported stolen tomorrow
= P(x=4) + P(x=5)
= 0.13392 + 0.1607
= 0.294624
Approximately 0.29