a. Slope of WZ = -2.25; Slope of WX = 5
b. WZ = √97; WX = √41
c. WXYZ is not a <em>rectangle, rhombus, nor a square</em>. We can conclude that: <em>D. WXYZ is none of these</em>.
<h3>Slope of a Segment</h3>
Slope = change in y/change in x
Given:
W(-1, 2), X(-5, 7), Y(-1, -2), and Z (3, -7)
a. Slope of WZ and slope of WX:
Slope of WZ = (-7 - 2)/(3 -(-1)) = -2.25
Slope of WX = (7 - 2)/(-1 -(-1)) = 5
b. Use distance formula,
, to find WZ and WX:
![WZ = \sqrt{(3 - (-1))^2 + (-7 - 2)^2}\\\\\mathbf{WZ = \sqrt{97} }](https://tex.z-dn.net/?f=WZ%20%3D%20%5Csqrt%7B%283%20-%20%28-1%29%29%5E2%20%2B%20%28-7%20-%202%29%5E2%7D%5C%5C%5C%5C%5Cmathbf%7BWZ%20%3D%20%5Csqrt%7B97%7D%20%7D)
![WX = \sqrt{(-5 -(-1))^2 + (7 - 2)^2}\\\\\mathbf{WX = \sqrt{41} }](https://tex.z-dn.net/?f=WX%20%3D%20%5Csqrt%7B%28-5%20-%28-1%29%29%5E2%20%2B%20%287%20-%202%29%5E2%7D%5C%5C%5C%5C%5Cmathbf%7BWX%20%3D%20%5Csqrt%7B41%7D%20%7D)
c. The quadrilateral WXYZ have adjacent sides that are not perpendicular to each other and have different slopes and different lengths, so therefore, WXYZ is not a rectangle, rhombus, nor a square. We can conclude that: <em>D. WXYZ is none of these</em>.
Learn more about slopes on:
brainly.com/question/3493733