Answer:
(3x-2y)(3x+2y)
Step-by-step explanation:
Proof:
(3x-2y)(3x+2y)-use FOIL method (First, Outer, Inner, Last)
3x*3x+2y3x-2y3x-2y*2y
9x^2+0-4y^2
<u>9x^2-4y^2</u>
The answer is (3x-2y)(3x+2y).
Answer:
Cody can play maximum number of 12 games.
Answer:
A
Step-by-step explanation:
Answer:
The given point A (6,13) lies on the equation. True
The given point B(21,33) lies on the equation. True
The given point C (99, 137) lies on the equation. True
Step-by-step explanation:
Here, the given equation is : 
Now,check the given equation for the given points.
1) A (6,13)
Substitute x = 6 in the given equation

⇒ y= 13
Hence, the given point A (6,13) lies on the equation.
2) B (21,33)
Substitute x = 21 in the given equation

⇒ y = 33
Hence, the given point B(21,33) lies on the equation.
3) C (99, 137)
Substitute x = 99 in the given equation

⇒ y = 137
Hence, the given point C (99, 137) lies on the equation.
Answer:
![\left(\displaystyle \sqrt[3]{x^{-\tfrac 35}}\right)^{\tfrac 58}](https://tex.z-dn.net/?f=%5Cleft%28%5Cdisplaystyle%20%5Csqrt%5B3%5D%7Bx%5E%7B-%5Ctfrac%2035%7D%7D%5Cright%29%5E%7B%5Ctfrac%2058%7D)
Step-by-step explanation:
![\left(\displaystyle \sqrt[3]{x^{-\tfrac 35}}\right)^{\tfrac 58}\\\\\\=\left[ \left(\displaystyle x^{-\tfrac 35} \right)^{\tfrac 13 \right]^{\tfrac 58}\\\\\\=\left( \displaystyle x^{-\tfrac 35}\right)^{\tfrac 5{24}}\\\\\\=x^{ \displaystyle -\tfrac{3}{24} \right}\\\\\\=x^{\displaystyle -\tfrac 18 }\\\\\\=\dfrac 1{x^{\tfrac 18}}](https://tex.z-dn.net/?f=%5Cleft%28%5Cdisplaystyle%20%5Csqrt%5B3%5D%7Bx%5E%7B-%5Ctfrac%2035%7D%7D%5Cright%29%5E%7B%5Ctfrac%2058%7D%5C%5C%5C%5C%5C%5C%3D%5Cleft%5B%20%5Cleft%28%5Cdisplaystyle%20x%5E%7B-%5Ctfrac%2035%7D%20%5Cright%29%5E%7B%5Ctfrac%2013%20%5Cright%5D%5E%7B%5Ctfrac%2058%7D%5C%5C%5C%5C%5C%5C%3D%5Cleft%28%20%5Cdisplaystyle%20x%5E%7B-%5Ctfrac%2035%7D%5Cright%29%5E%7B%5Ctfrac%205%7B24%7D%7D%5C%5C%5C%5C%5C%5C%3Dx%5E%7B%20%5Cdisplaystyle%20-%5Ctfrac%7B3%7D%7B24%7D%20%20%5Cright%7D%5C%5C%5C%5C%5C%5C%3Dx%5E%7B%5Cdisplaystyle%20-%5Ctfrac%2018%20%20%7D%5C%5C%5C%5C%5C%5C%3D%5Cdfrac%201%7Bx%5E%7B%5Ctfrac%2018%7D%7D)