Answer:
25
Step-by-step explanation:
We require to solve for n, hence
n(n + 1) = 325
multiply both sides by 2 to eliminate the fraction
n(n + 1) = 650
n² + n = 650
subtract 650 from both sides to have equation in standard form
n² + n - 650 = 0 ← in standard form
(n + 26)(n - 25) = 0 ← in factored form
equate each factor to zero and solve for n
n + 26 = 0 ⇒ n = - 26
n - 25 = 0 ⇒ n = 25
however, n > 0 ⇒ n = 25
Use the fomula a_(n)= a_(1)+ d(n-1)
At the end of the zeroth year, the population is 200.
At the end of the first year, the population is 200(0.96)¹
At the end of the second year, the population is 200(0.96)²
We can generalise this to become at the end of the nth year as 200(0.96)ⁿ
Now, we need to know when the population will be less than 170.
So, 170 ≤ 200(0.96)ⁿ
170/200 ≤ 0.96ⁿ
17/20 ≤ 0.96ⁿ
Let 17/20 = 0.96ⁿ, first.
log_0.96(17/2) = n
n = ln(17/20)/ln(0.96)
n will be the 4th year, as after the third year, the population reaches ≈176
Answer:
Step-by-step explanation:
Let as us 45 as the number we should use to get the square root in the simplest form
And then 144
The square root of a number in is simplest form means to get the number inside the radical as low as possible
Answer:
x-120=899
Step-by-step explanation:
(x=1019)