Answer:
I) |xz| ≈ 28.6 km
II) |yz| ≈ 34.8 km
Step-by-step explanation:
Let's assume that the position of ship due south of x is z (aà pictor representation of the question is attached)
|xy| = 20 km, |xz| = ?, |yz| = ?, θ(y) = 55°
Using Trigonometric ratio - SOHCAHTOA
I) Tan θ = |xz| ÷ |xy| ⇒ Tan 55° = |xz| ÷ 20
|xz| = 20 * Tan 55 = 20 * 1.428
|xz| = 28.56 km
|xz| ≈ <u>28.6 km</u>
<u />
II) Cos θ = |xy| ÷ |yz| ⇒ Cos 55° = 20 ÷ |yz|
|yz| * Cos 55° = 20 ⇒ |yz| = 20 ÷ Cos 55°
|yz| = 20 ÷ 0.574 = 34.84 km
|yz| ≈ <u>34.8 km</u>
Answer:
13,67,29,17,19,23
Step-by-step explanation:
Answer:
171.65
Step-by-step explanation:
A=2AB+(a+b+c)h
AB=s(s﹣a)(s﹣b)(s﹣c)
s=a+b+c
2
Solving forA
A=ah+bh+ch+1
2﹣a4+2(ab)2+2(ac)2﹣b4+2(bc)2﹣c4=5·10+5·10+5·10+1
2·﹣54+2·(5·5)2+2·(5·5)2﹣54+2·(5·5)2﹣54≈171.65064
Answer:
The nth term is Tn = 2[T(n- 1) -2]
The next term is 356
Step-by-step explanation:
Given
Terms: 15,26,48,92,180
Solving (a) : The recursive n term
We have:
T1 = 15
T2 = 26 = 13 * 2 = (15 - 2) * 2
T3 = 48 = 24 * 2 = (26 - 2) * 2
T4 = 92 = 46 * 2 = (48 - 2) * 2
T5 = 180 = 90 * 2 = (92 - 2) * 2
So, the nth term can be represented as:
Tn = [T(n-1) - 2] * 2
Tn = 2[T(n-1) - 2]
The next term is the 6th term.
So, substitute 6 for n in the above formula.
T6 = 2 * [T(6 - 1) - 2]
T6 = 2 * [T5 - 2]
Substitute 180 for T5
T6 = 2 * (180 - 2)
T6 = 2 * 178
T6 = 356