Answer:
If you have a quantity X of a substance, with a decay constant r, then the equation that tells you the amount of substance that you have, at a time t, is:
C(t) = X*e^(-r*t)
Now, we know that:
We have 2000g of substance A, and it has a decay constant of 0.03 (i assume that is in 1/year because the question asks in years)
And we have 3000 grams of substance B, with a decay constant of 0.05.
Then the equations for both of them will be:
Ca = 2000g*e^(-0.03*t)
Cb = 3000g*e^(-0.05*t)
Where t is in years.
We want to find the value of t such that Ca = Cb.
So we need to solve:
2000g*e^(-0.03*t) = 3000g*e^(-0.05*t)
e^(-0.03*t) = (3/2)e^(-0.05*t)
e^(-0.03*t)/e^(-0.05*t) = 3/2
e^(t*(0.05 - 0.03)) = 3/2
e^(t*0.02) = 3/2
Now we can apply Ln(x) to both sides, and get:
Ln(e^(t*0.02)) = Ln(3/2)
t*0.02 = Ln(3/2)
t = Ln(3/2)/0.02 = 20.3
Then after 20.3 years, both substances will have the same mass.
Answer:
Divided by 5.
Step-by-step explanation:
It is five times smaller than the original picture.
Answer:
The length of DF must be between 21 and 53.
Step-by-step explanation:
In a triangle, the length of two sides added together must exceed the length of the 3rd side. So, since EF is the shortest of the two givens, we know that EF + DF must be greater than DE. So we can plug in these numbers to find the minimum.
EF + DF > DE
16 + DF > 37
DF > 21
Now, for the upper maximum, we know that the two given lengths must be greater than the length of DF. So again, we can solve for the maximum using the amounts.
DE + EF > DF
37 + 16 > DF
53 > DF
With these two in mind, we know that DF must be between 21 and 53
Circumference= 2πr
Circumference= perimeter
14.28km= 2(3.14)r
14.28= 6.2831853072r
divide both sides by 6.2831853072
2.27= r
ANSWER: The radius is 2.27km
Hope this helps! :)
wssss
Step-by-step explanation:
ssss