Answer:
Light
Explanation:
The way a concave mirror works is that since it's concave, the light bounces off of each other. a convex mirror, it curved the opposite, and the mirror has no way to bounce off of itself.
Answer:
a=g(sinθ-μkcosθ)
Explanation:
In an inclined plane the forces that interact with the object can be seen in the figure. The normal force, the weight w and the decomposition of the force vector of weight can be observed.
wx=m*g*sinθ
wy=m*g*cosθ
As the objects moves down an incline, acceleration in y axis is 0.
Then, by second Newton's Law:
Fy = m*ay
FN - m*g cos θ = 0,
FN=m*g cos θ
In x axis the forces that interacs are the x component of weight and friction force:
Fx = m*ax
mg sen u-FN*μk=m*a
Being friction force, Fr=FN*μk, we replace with its value in below formula:
m*g *sinθ-(m*g*cosθ*μk)=m*a
Then, isolating a:
a=(m*g sinθ-(m*g*cosθ*μk))/m
Solving, we have next equation:
a=g sinθ-(g*cosθ*μk)
Applying distributive property we have:
a=g*(sinθ-μk*cosθ)
Pnet = Po + dgh
<span>Density of saltwater = 1030 kg/m^3. </span>
<span>Disregard the thickness. Assuming it's a circular window, then the area is pi(r^2). </span>
<span>d = 20 cm = 0.2 m </span>
<span>r = d/2 = 0.1 m </span>
<span>A = pi(r^2) </span>
<span>A = 3.14159265(.1^2) </span>
<span>A = 0.0314159265 m^2 </span>
<span>p = F/A </span>
<span>p = (1.1 x 10^6) / (0.0314159265) </span>
<span>p = 35,014,087.5 Pa </span>
<span>1 atm = 101,325 Pa </span>
<span>P = Po + dgh </span>
<span>h = (P - Po) / dg </span>
<span>h = (35,014,087.5 - 101,325) / (1030 x 9.81) </span>
<span>h = 3 455.23812 m </span>
<span>h = 3.5 km</span>
The density would decrease because the mass of an object deals with the amount of atoms in the object and since none of the object was reduced "a" wouldn't be the answer. Depending on the amount and period of time that the heat is applied the liquid could change into a gas so "d" wouldn't be correct. Density is the mass÷ volume, and when you add heat to an object it could take up different amounts of space because of its particles gaining energy and spreading apart. So the density would decrease because of the volume increasing. So I believe that "c" is the answer.
Answer:
t = 4.08 s
R = 40.8 m
Explanation:
The question is asking us to solve for the time of flight and the range of the rock.
Let's start by finding the total time it takes for the rock to land on the ground. We can use this constant acceleration kinematic equation to solve for the displacement in the y-direction:
We have these known variables:
- (v_0)_y = 0 m/s
- a_y = -9.8 m/s²
- Δx_y = -20 m
And we are trying to solve for t (time). Therefore, we can plug these values into the equation and solve for t.
- -20 = 0t + 1/2(-9.8)t²
- -20 = 1/2(-9.8)t²
- -20 = -4.9t²
- t = 4.08 sec
The time it takes for the rock to reach the ground is 4.08 seconds.
Now we can use this time in order to solve for the displacement in the x-direction. We will be using the same equation, but this time it will be in terms of the x-direction.
List out known variables:
- v_0 = 10 m/s
- t = 4.08 s
- a_x = 0 m/s
We are trying to solve for:
By using the same equation, we can plug these known values into it and solve for Δx.
- Δx = 10 * 4.08 + 1/2(0)(4.08)²
- Δx = 10 * 4.08
- Δx = 40.8 m
The rock lands 40.8 m from the base of the cliff.