Explanation:
The acceleration of the object equals the gravitational acceleration. The mass, size, and shape of the object are not a factor in describing the motion of the object. So all objects, regardless of size or shape or weight, free fall with the same acceleration hope that helps
We use the kinematics equation:
Vf = Vi + a*t
8 = 0 + 3.6 * t
t=2.222s to reach 8.0 m/s
At that time the train has moved
4.5 m/s * 2.222s = 9.999 m
He travelled (another kinematics equation)
Vf^2 = Vi^2 + (2*a*d)
(8.0)^2 = (0)^2 + (2 * 3.6 * d)
d=8.888 m
The train is 9.999m, the fugitive is 8.888m,
He still needs to travel
9.999-8.888= 1.111m
He needs to cover the rest of the distance in a smaller amount of time, however hes at his maximum velocity, so...
8m/s(man) - 4.5m/s(train) = 3.5 m/s more
(1.111m) / (3.5m/s) = .317seconds more to reach the train
So if it takes 2.222 seconds to approach the train at 8.888m, it should take
2.222 + .317 =2.529 seconds to reach the train completely
Last but not least is to figure out the total distance traveled in that time frame:
(Trains velocity) * (total time)
(4.5m/s)*(2.529s)=11.3805m
When sulphur burns it turns to sulphur dioxide
The correct answer is c) gas.
In gases, in fact, particles are not bound together (and the intermolecular forces between them are negligible) and they are completely free to move. For this reason, when a gas is put in a container, the particles of the gas will move in every possible direction, filling all the space available in the container (for this reason, we also say that gases have no fixed shape).