Answer:
The measure of the third arc is
Step-by-step explanation:
step 1
we know that
The measurement of the external angle is the semi-difference of the arcs which comprises
in this problem
Let
x----> the greater arc of the circle intercepted by the secant and the tangent
y----> the smaller arc of the circle intercepted by the secant and the tangent
----> equation A
-----> equation B
Substitute equation B in equation A and solve for y
Find the value of x
step 2
Find the measure of the third arc
Let
z------> the measure of the third arc
we know that
-----> complete circle
substitute the values and solve for z
3/8=answer
1) 5/8-1/4=
2) <u>(</u><u>5</u><u>•</u><u>4</u><u>)</u><u>-</u><u>(</u><u>1</u><u>•</u><u>8</u><u>)</u><u>=</u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>8•4
3) <u>20-8</u><u> </u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>32 =
4) <u>12</u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>32=
5) <u>12</u><u>/</u><u>4</u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>32/4=
6) <u>3</u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>8 =answer
<span>r means radius so it can't be negative.
<=>
A = 4 pi r²
r = sqr (A / 4pi)
</span>
-27 x -2 = 54
The answer would be the square root of 54