Answer:
<h2>
The answer is C </h2>
Explanation:
when a car begins to slow down the speed that it was going will decrease. Which means that it is an example of deceleration.
The temperature of a certain substance can be seen as the average speed of the atoms or molecules in that substance. In the liquid state of a substance the forces between the atoms or molecules are strong enough to keep them together, however with enough freedom to move, unlike in the solid state. If we would have a closer look at the surface of a liquid from sideways, we would see water molecules jumping out of the water and reentering it again. The lower the water temperature would be the lesser the amount of water molecules leaving the liquid phase would be. If water would be heated up and the temperature will reach 100 degrees C at normal atmospheric pressure, more water molecules would leave the water than reentering. Boiling has started. The temperature of the water remains at 100 degrees C, if the heating continues as the average speed of molecules will not increase, only the rate of molecules leaving the water will increase, until all the water in liquid state has been vapourized. The amount of heat needed to vapourize liquid water is called latent heat. Latent heat is a very important driving factor in the atmosphere and thus the weather.
Answer:
W=-37.6kJ, therefore, work is done on the system.
Explanation:
Hello,
In this case, the first step is to compute the moles of each gas present in the given mixture, by using the total mixture weight the mass compositions and their molar masses:

Next, the total moles:

After that, since the process is isobaric, we can compute the work as:

Therefore, we need to compute both the initial and final volumes which are at 260 °C and 95 °C respectively for the same moles and pressure (isobaric closed system)

Thereby, the magnitude and direction of work turn out:

Thus, we conclude that since it is negative, work is done on the system (first law of thermodynamics).
Regards.
Answer:
Empirical formula of C₈H₈ = CH
Explanation:
Data Given:
Molecular Formula = C₈H₈
Empirical Formula = ?
Solution
Empirical Formula:
Empirical formula is the simplest ration of atoms in the molecule but not all numbers of atoms in a compound.
So,
tha ration of the molecular formula should be divided by whole number to get the simplest ratio of molecule
C₈H₈ Consist of Carbon (C), and Hydrogen (H)
Now
Look at the ratio of these two atoms in the compound
C : H
8 : 8
Divide the ratio by two to get simplest ratio
C : H
8/8 : 8/8
1 : 1
So for the empirical formula is the simplest ratio of carbon to hydrogen 1 : 1
So the empirical formula will be
Empirical formula of C₈H₈ = CH