1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
igomit [66]
3 years ago
6

1500= 5n- 300 Solve the equation for n . Show work.

Mathematics
2 answers:
IgorC [24]3 years ago
7 0

Answer:

360 = n

Step-by-step explanation:

1500 = 5n - 300

+300 + 300

____________

1800 = 5n

____ ___

5 5

360 = n

I am joyous to assist you anytime.

quester [9]3 years ago
6 0

Answer: 360 = n

Step-by-step explanation:

1500= 5n - 300

+300        +300

1800=5n

1800/5

360=n

I would appreciate a brainliest, please?

You might be interested in
HEEELP
Drupady [299]

Answer: (c)

Step-by-step explanation:

Given

f(x)=\dfrac{1}{x-3}\\\\g(x)=\sqrt{x+5}

Here, \sqrt{x+5}\ \text{is always greater than equal to 0}\\\Rightarrow x+5\geq 0\\\Rightarrow x\geq -5\quad \ldots(i)

To get f\left(g(x)\right), replace x in f(x) by g(x)\ \text{i.e. by}\ \sqrt{x+5}

\Rightarrow f\left(g(x)\right)=\dfrac{1}{\sqrt{x+5}-3}\\\\\text{Denominator must not be equal to 0}\\\\\therefore \sqrt{x+5}-3\neq0\\\Rightarrow \sqrt{x+5}\neq 3\\\Rightarrow x+5\neq 9\\\Rightarrow x\neq 4\quad \ldots(ii)

Using (i) and (ii)  it can be concluded that the domain of f\left(g(x)\right) is all real numbers except 0.

Therefore, its domain is given by

x\in [-5,4)\cup (4,\infty)

Option (c) is correct.

5 0
3 years ago
If 1 yard = 3 feet and 1 mile = 5,280 feet, how many yards are there in 2 miles?
Mars2501 [29]
2 miles = 3520 yards
FORMULA multiply the length value by 1760
3 0
3 years ago
Shortern this expression pls​
pogonyaev

Answer:

c =\frac{8}{3}

Step-by-step explanation:

Given

c = \sqrt{\frac{4 + \sqrt 7}{4 - \sqrt 7}} +  \sqrt{\frac{4 - \sqrt 7}{4 + \sqrt 7}}

Required

Shorten

We have:

c = \sqrt{\frac{4 + \sqrt 7}{4 - \sqrt 7}} +  \sqrt{\frac{4 - \sqrt 7}{4 + \sqrt 7}}

Rationalize

c = \sqrt{\frac{4 + \sqrt 7}{4 - \sqrt 7} * \frac{4 + \sqrt 7}{4 + \sqrt 7}} +  \sqrt{\frac{4 - \sqrt 7}{4 + \sqrt 7}*\frac{4 - \sqrt 7}{4 - \sqrt 7}}

Expand

c = \sqrt{\frac{(4 + \sqrt 7)^2}{4^2 - (\sqrt 7)^2}} +  \sqrt{\frac{(4 - \sqrt 7)^2}{4^2 - (\sqrt 7)^2}

c = \sqrt{\frac{(4 + \sqrt 7)^2}{16 - 7}} +  \sqrt{\frac{(4 - \sqrt 7)^2}{16 - 7}

c = \sqrt{\frac{(4 + \sqrt 7)^2}{9}} +  \sqrt{\frac{(4 - \sqrt 7)^2}{9}

Take positive square roots

c =\frac{4 + \sqrt 7}{3} +  \frac{4 - \sqrt 7}{3}

Take LCM

c =\frac{4 + \sqrt 7 + 4 - \sqrt 7}{3}

Collect like terms

c =\frac{4  + 4+ \sqrt 7 - \sqrt 7}{3}

c =\frac{8}{3}

4 0
3 years ago
A pencil box contains five
KonstantinChe [14]

Answer:

red pencil=5/24

yellow pencil=6/24

Blue pencil=8/24

Orange pencil=3/24

purple pencil=2/24

5 0
3 years ago
Bridget is on her middle school’s basketball team. In it’s last game, her team made 31 of it’s shots. Some of those were free th
aksik [14]

Answer:

Step-by-step explanation:

Let the number of free throws = x

And the number of regular field goals = y

Total shots made by the team = 31

Equation for the shots will be,

x + y = 31 ------(1)

If the team gets 1 point for free throws and 2 points for a regular field goal,

x + 2y = 49 --------(2)

[total points gained by the team = 49]

1). Option (2) is the correct option.

2). Subtracting equation (1) from equation (2),

  (x + 2y) - (x + y) = 49 - 31

  y = 18

  Therefore, number of  regular field goals made by the team = 18

7 0
3 years ago
Other questions:
  • HELP PLEASE!!! 45 POINTS AND BRAINLIEST FOR THE FIRST CORRECT ANSWER!!!!
    6·2 answers
  • 19 x 50 =_fifties. Please help me
    12·2 answers
  • 8) (10) Solve the equation y''=x^2-y+3y' y(0)=1 and y'(0) =-1
    13·1 answer
  • Evaluate the expression 5^2+10.2×4-2
    7·1 answer
  • Help plz :( it’s rlly hard
    8·2 answers
  • Find x + y + z.<br><br>A)180<br>B)150<br>C)360<br>D)270​
    6·2 answers
  • Given<br> f(x) = -4(x+5),<br> what is the value of<br> f(-3)?<br> 
    6·1 answer
  • 1. When the discriminant is grater than zero, the equation has:
    5·1 answer
  • ⟟⏁⋉⟒⟒⋔⍜⊑⍀⏃⏁⏃⌿⏃⍀⏃⟒⎅⍜⍀⟟⋔⟒⏃⋔⎍⋔⎍⏃⋔⟒⋏⍜⍀⏃⏁⟒⎅⏃⟒⌰⏃⏁⟒⟒⎅⏃⟒⋔⍜⟒⎅⍜⍀⟟⋔⟒⏃⋔⟒⋏⍜⍜⌰⋔⟒⋏⏃⎅⟒⌿⏃⎅⏃⍀⟟⏃⋔⟒⋏⍜ ⎅⟟⋔⟒⎅⏃ ​
    11·1 answer
  • Brainliest to best answer.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!