I'll just give you the link for it but count it as my answer. http://www.differencebetween.com/difference-between-leptons-and-vs-hadrons/
When a force causes a body to move, work is done on the object by the force. Work is the measure of the energy transfer when a force 'F' moves an object through a distance 'd'. So we say that energy is transferred from one energy store to another when work is done, and therefore, energy transferred = work done.
Answer:
2000 kg m/s
Explanation:
The momentum of an object is a vector quantity whose magnitude is given by

where
m is the mass of the object
v is the velocity of the object
and its direction is the same as the velocity.
In this problem, we have:
- Spaceship 1 has
m = 200 kg (mass)
v = 0 m/s (zero velocity)
So its momentum is

- Spaceship 2 has
m = 200 kg (mass)
v = 10 m/s (velocity)
So its momentum is

Therefore, the combined momentum of the two spaceships is

Complete Question
The complete question is shown on the first uploaded image
Answer:
The components of reaction at the fixed support are
,
,
,
,
, 
Explanation:
Looking at the diagram uploaded we see that there are two forces acting along the x-axis on the fixed support
These force are 400 N and
[ i.e the reactive force of 400 N ]
Hence the sum of forces along the x axis is mathematically represented as

=> 
Looking at the diagram uploaded we see that there are two forces acting along the y-axis on the fixed support
These force are 500 N and
[ i.e the force acting along the same direction with 500 N ]
Hence the sum of forces along the x axis is mathematically represented as

=> 
Looking at the diagram uploaded we see that there are two forces acting along the z-axis on the fixed support
These force are 600 N and
[ i.e the reactive force of 600 N ]
Hence the sum of forces along the x axis is mathematically represented as

=> 
Generally taking moment about A along the x-axis we have that

=> 
Generally taking moment about A along the y-axis we have that

=> 
Generally taking moment about A along the z-axis we have that

=> 
0.25 m/s squared
hope this helps x