1. 0.16 N
The weight of a man on the surface of asteroid is equal to the gravitational force exerted on the man:

where
G is the gravitational constant
is the mass of the asteroid
m = 100 kg is the mass of the man
r = 2.0 km = 2000 m is the distance of the man from the centre of the asteroid
Substituting, we find

2. 1.7 m/s
In order to stay in orbit just above the surface of the asteroid (so, at a distance r=2000 m from its centre), the gravitational force must be equal to the centripetal force

where v is the minimum speed required to stay in orbit.
Re-arranging the equation and solving for v, we find:

I would like to visit Pluto because i want to see what a Dwarf planet would look like, i would like to see what kind of minerals are in the planet its self..
Brainliest answer?
Answer:
D
Explanation:
Work is not a vector but it is a scalar
Answer:
Carbohydrate, Fat and Protein
Explanation:
Answer:
Balances and Scales
A balance compares an object with a known mass to the object in question. One example of a balance is the triple beam balance. The standard unit of measure for mass is based on the metric system and is typically denoted as kilograms or grams.