At rest because if the distance is not changing, then it is not moving any further, so it must not be moving! The time keeps going no matter what, so the distance, whether it is 0 m or 10,000 km, if the y is horizontal the distance does not change.
Answer:
a.
b.
c.
d. The angular acceleration when sitting in the middle is larger.
Explanation:
a. The magnitude of the torque is given by
, being r the radius, F the force aplied and
the angle between the vector force and the vector radius. Since
and so
.
b. Since the relation
hols, being I the moment of inertia, the angular acceleration can be calculated by
. Since we have already calculated the torque, all left is calculate the moment of inertia. The moment of inertia of a solid disk rotating about an axis that passes through its center is
, being M the mass of the disk. If we assume that a person has a punctual mass, the moment of inertia of a person would be given by
, being
the mass of the person and
the distance from the person to the center. Given all of this, we have
.
c. Similar equation to b, but changing
, so
.
d. The angular acceleration when sitting in the middle is larger because the moment of inertia of the person is smaller, meaning that the person has less inertia to rotate.
Answer:
t = 2.2 s
Explanation:
Given that,
A person observes a firework display for A safe distance of 0.750 km.
d = 750 m
The speed of sound in air, v = 340 m/s
We need to find the between the person see and hear a firework explosion. let it is t. So, using the formula of speed.

So, the required time is 2.2 seconds.
The amplitude of a sound<span> wave </span>determines<span> its </span>loudness<span> or volume. A larger amplitude means a louder </span>sound<span>, and a smaller amplitude means a softer </span><span>sound</span>