Answer:
The heat loss per unit length is 
Explanation:
From the question we are told that
The outer diameter of the pipe is 
The thickness is
The temperature of water is
The outside air temperature is 
The water side heat transfer coefficient is 
The heat transfer coefficient is 
The heat lost per unit length is mathematically represented as
![\frac{Q}{L} = \frac{2 \pi (T - Ta)}{ \frac{ln [\frac{d}{D} ]}{z_1} + \frac{ln [\frac{d}{D} ]}{z_2}}](https://tex.z-dn.net/?f=%5Cfrac%7BQ%7D%7BL%7D%20%20%20%3D%20%5Cfrac%7B2%20%5Cpi%20%28T%20-%20Ta%29%7D%7B%20%5Cfrac%7Bln%20%5B%5Cfrac%7Bd%7D%7BD%7D%20%5D%7D%7Bz_1%7D%20%20%2B%20%20%5Cfrac%7Bln%20%5B%5Cfrac%7Bd%7D%7BD%7D%20%5D%7D%7Bz_2%7D%7D)
Substituting values
![\frac{Q}{L} = \frac{2 * 3.142 (363 - 263)}{ \frac{ln [\frac{0.104}{0.002} ]}{300} + \frac{ln [\frac{0.104}{0.002} ]}{20}}](https://tex.z-dn.net/?f=%5Cfrac%7BQ%7D%7BL%7D%20%20%20%3D%20%5Cfrac%7B2%20%2A%203.142%20%28363%20-%20263%29%7D%7B%20%5Cfrac%7Bln%20%5B%5Cfrac%7B0.104%7D%7B0.002%7D%20%5D%7D%7B300%7D%20%20%2B%20%20%5Cfrac%7Bln%20%5B%5Cfrac%7B0.104%7D%7B0.002%7D%20%5D%7D%7B20%7D%7D)


It’s a total of 16 cm because it starts at 0 moves then moves to left then the right then the left
The time the package travels horizontally is equal to the time it takes to hit the ground. This can be calculated using:
s = ut + 1/2 at²; u is 0
480 = 4.9t²
t = 9.90 seconds
Horizontal distance = horizontal speed x time
The speed will be converted to m/s from km/h
= 180 km/hr x 1000m/km x 1hr/3600 seconds x 9.90 seconds
= 495 m
Answer:
Option C. 30 m
Explanation:
From the graph given in the question above,
At t = 1 s,
The displacement of the car is 10 m
At t = 4 s
The displacement of the car is 40 m
Thus, we can simply calculate the displacement of the car between t = 1 and t = 4 by calculating the difference in the displacement at the various time. This is illustrated below:
Displacement at t = 1 s (d1) = 10 m
Displacement at t= 4 s (d2) = 40
Displacement between t = 1 and t = 4 (ΔD) =?
ΔD = d2 – d1
ΔD = 40 – 10
ΔD = 30 m.
Therefore, the displacement of the car between t = 1 and t = 4 is 30 m.