1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fenix001 [56]
3 years ago
14

A recipe includes 6 cups of flour and three fourths cup of butter butter. Write the ratio of the amount of flour to the amount o

f butter butter as a fraction in simplest form.
Mathematics
1 answer:
vodka [1.7K]3 years ago
4 0
Iejejejsjhdhbdnjdjdjdfuucjdjdndjd
You might be interested in
2=8−6/4x help please yall whats the x
Alenkasestr [34]

Answer:

x= 4

Step-by-step explanation:

How to solve your problem

Topics: Algebra

2=8−1⋅64⋅

2=8-1 \cdot \frac{6}{4} \cdot x

2=8−1⋅46​⋅x

Solve

Divide the numbers

2=8−1⋅64⋅

2=8-1 \cdot {\color{#c92786}{\frac{6}{4}}} \cdot x

2=8−1⋅46​⋅x

2=8−1⋅32

2=8-1 \cdot {\color{#c92786}{\frac{3}{2}}}x

2=8−1⋅23​x

Multiply the numbers

2=8−1⋅32

2=8{\color{#c92786}{-1}} \cdot {\color{#c92786}{\frac{3}{2}}}x

2=8−1⋅23​x

2=8−32

2=8{\color{#c92786}{-\frac{3}{2}}}x

2=8−23​x

Combine multiplied terms into a single fraction

2=8−32

2=8-\frac{3}{2}x

2=8−23​x

2=8+−3 2

2=8+\frac{-3x}{2}

2=8+2−3x​

Find common denominator

2=8+−3 2

2=8+\frac{-3x}{2}

2=8+2−3x​ 2 =2⋅82+−3 2

2=\frac{2 \cdot 8}{2}+\frac{-3x}{2}

2=22⋅8​+2−3x ​

Combine fractions with common denominator

2=2⋅82+−3 2

2=\frac{2 \cdot 8}{2}+\frac{-3x}{2}

2=22⋅8​+2−3x​

2=2⋅8−3 2

2=\frac{2 \cdot 8-3x}{2}

2=22⋅8−3x​

Multiply the numbers

2=2⋅8-3 2

2=\frac{{\color{#c92786}{2}} \cdot {\color{#c92786}{8}}-3x}{2}

2=22⋅8−3x​ 2=16−3 2

2=\frac{{\color{#c92786}{16}}-3x}{2}

2=216−3x​

Rearrange terms

2=16−3 2

2=\frac{{\color{#c92786}{16-3x}}}{2}

2=2 16−3x ​2=−3+16 2

2=\frac{{\color{#c92786}{-3x+16}}}{2}

2=2−3x+16​

Multiply all terms by the same value to eliminate fraction denominators

2=−3+16 2 2=\frac{-3x+16}{2}

2=2−3x+16​

2⋅2=2(−3+16 2)

2 \cdot 2=2(\frac{-3x+16}{2})

2⋅2=2(2−3x+16​)

Cancel multiplied terms that are in the denominator

2⋅2=2(−3+16 2)

2 \cdot 2=2(\frac{-3x+16}{2})

2⋅2=2(2−3x+16​)

2⋅2=−3+16

2 \cdot 2=-3x+16

2⋅2=−3x+16

Multiply the numbers

2⋅2=−3+16

{\color{#c92786}{2}} \cdot {\color{#c92786}{2}}=-3x+16

2⋅2=−3x+16

4=−3+16

{\color{#c92786}{4}}=-3x+16

4=−3x+16

Subtract

16

from both sides of the equation

4=−3x+16

4−16=−3+16−16

4{\color{#c92786}{-16}}=-3x+16{\color{#c92786}{-16}}

4−16=−3x+16−16

Simplify

Subtract the numbers

−12=−3

Divide both sides of the equation by the same term

−12=−3

\frac{-12}{{\color{#c92786}{-3}}}=\frac{-3x}{{\color{#c92786}{-3}}}

−3−12​=−3−3x​

Simplify

Divide the numbers

Cancel terms that are in both the numerator and denominator

Move the variable to the left

= 4

8 0
3 years ago
True or False: The variables in the equation 4x-(5y)2=64x-(5y)2=6 are 4, 5, and 6
aleksley [76]

Answer: False

Step-by-step explanation:

4x - (5y) 2 = 64x - (5y) 2 = 6

Identify the variables:

4x, 5y, 64x

So, it would actually be:

4, 5, and 64

6 0
3 years ago
3 times negative 13/8
professor190 [17]
3•-13/8 is -4.875 or or -4 7/8
8 0
2 years ago
Read 2 more answers
Thea has a key on her calculator marked $\textcolor{blue}{\bf\circledast}$. If an integer is displayed, pressing the $\textcolor
worty [1.4K]

Answer:

$9$

Step-by-step explanation:

Given: Thea enters a positive integer into her calculator, then squares it, then presses the $\textcolor{blue}{\bf\circledast}$ key, then squares the result, then presses the $\textcolor{blue}{\bf\circledast}$ key again such that the calculator displays final number as $243$.

To find: number that Thea originally entered

Solution:

The final number is $243$.

As previously the $\textcolor{blue}{\bf\circledast}$ key was pressed,

the number before $243$ must be $324$.

As previously the number was squared, so the number before $324$ must be $18$.

As previously the $\textcolor{blue}{\bf\circledast}$ key was pressed,

the number before $18$ must be $81$

As previously the number was squared, so the number before $81$ must be $9$.

3 0
3 years ago
Find the six trig function values of the angle 240*Show all work, do not use calculator
-BARSIC- [3]

Solution:

Given:

240^0

To get sin 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, sin 240 will be negative.

sin240^0=sin(180+60)

Using the trigonometric identity;

sin(x+y)=sinx\text{ }cosy+cosx\text{ }siny

Hence,

\begin{gathered} sin(180+60)=sin180cos60+cos180sin60 \\ sin180=0 \\ cos60=\frac{1}{2} \\ cos180=-1 \\ sin60=\frac{\sqrt{3}}{2} \\  \\ Thus, \\ sin180cos60+cos180sin60=0(\frac{1}{2})+(-1)(\frac{\sqrt{3}}{2}) \\ sin180cos60+cos180sin60=0-\frac{\sqrt{3}}{2} \\ sin180cos60+cos180sin60=-\frac{\sqrt{3}}{2} \\  \\ Hence, \\ sin240^0=-\frac{\sqrt{3}}{2} \end{gathered}

To get cos 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, cos 240 will be negative.

cos240^0=cos(180+60)

Using the trigonometric identity;

cos(x+y)=cosx\text{ }cosy-sinx\text{ }siny

Hence,

\begin{gathered} cos(180+60)=cos180cos60-sin180sin60 \\ sin180=0 \\ cos60=\frac{1}{2} \\ cos180=-1 \\ sin60=\frac{\sqrt{3}}{2} \\  \\ Thus, \\ cos180cos60-sin180sin60=-1(\frac{1}{2})-0(\frac{\sqrt{3}}{2}) \\ cos180cos60-sin180sin60=-\frac{1}{2}-0 \\ cos180cos60-sin180sin60=-\frac{1}{2} \\  \\ Hence, \\ cos240^0=-\frac{1}{2} \end{gathered}

To get tan 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, tan 240 will be positive.

tan240^0=tan(180+60)

Using the trigonometric identity;

tan(180+x)=tan\text{ }x

Hence,

\begin{gathered} tan(180+60)=tan60 \\ tan60=\sqrt{3} \\  \\ Hence, \\ tan240^0=\sqrt{3} \end{gathered}

To get cosec 240 degrees:

\begin{gathered} cosec\text{ }x=\frac{1}{sinx} \\ csc240=\frac{1}{sin240} \\ sin240=-\frac{\sqrt{3}}{2} \\  \\ Hence, \\ csc240=\frac{1}{\frac{-\sqrt{3}}{2}} \\ csc240=-\frac{2}{\sqrt{3}} \\  \\ Rationalizing\text{ the denominator;} \\ csc240=-\frac{2}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}} \\  \\ Thus, \\ csc240^0=-\frac{2\sqrt{3}}{3} \end{gathered}

To get sec 240 degrees:

\begin{gathered} sec\text{ }x=\frac{1}{cosx} \\ sec240=\frac{1}{cos240} \\ cos240=-\frac{1}{2} \\  \\ Hence, \\ sec240=\frac{1}{\frac{-1}{2}} \\ sec240=-2 \\  \\ Thus, \\ sec240^0=-2 \end{gathered}

To get cot 240 degrees:

\begin{gathered} cot\text{ }x=\frac{1}{tan\text{ }x} \\ cot240=\frac{1}{tan240} \\ tan240=\sqrt{3} \\  \\ Hence, \\ cot240=\frac{1}{\sqrt{3}} \\  \\ Rationalizing\text{ the denominator;} \\ cot240=\frac{1}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}} \\  \\ Thus, \\ cot240^0=\frac{\sqrt{3}}{3} \end{gathered}

5 0
1 year ago
Other questions:
  • Drug abuse is defined as __________.
    14·2 answers
  • Kevin says that lines p and m will eventually intersect.
    13·2 answers
  • Evaluate the expression when x = 1/2 and y = -5<br><br> 11x - 8 ( x - y )
    11·1 answer
  • Simplify the equality 2y&gt;4
    5·2 answers
  • 3/4 divided by 1/3 write answer in simplest form
    8·1 answer
  • Estimate the percent that is shaded
    11·2 answers
  • Two i others ways to name
    13·1 answer
  • Thao says she can find the answer to 8*90 by halving the 8 and doubling the 90 again and again until she gets down to 1*720 is s
    6·1 answer
  • The graph below shows a line of best fit for the number of workers needed for different construction projects.
    7·2 answers
  • P:<br> N:<br> L:<br> M:<br><br> Explain what you need to find the equation for each problem.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!