Since the order of selection does not matter, we will use combinations to solve this problem.
We are to form the combination of 30 objects taken 6 at a time. This can be expressed as 30C6.

This means the six teachers can be selected in 593775 ways.
So the correct answer is option A
10ax + 5bx - 8ay - 4by = 5x(2a + b) - 4y(2a + b) = (5x - 4y)(2a + b)
option d is the correct answer.
Withdrew 1200
spent 1/5 on travel : 1/5(1200) = 1200/5 = 240
leaving her with : 1200 - 240 = 960
spent 2/3 on hardware : 2/3(960) = 1920/3 = 640
leaving her with : 960 - 640 = 320
320 - lunch = 300.50
320 - 300.50 = lunch
19.50 = lunch <==
<span>et us assume that the origin is the floor right below the 30 ft. fence
To work this one out, we'll start with acceleration and integrate our way up to position.
At the time that the player hits the ball, the only force in action is gravity where: a = g (vector)
ax = 0
ay = -g (let's assume that g = 32.8 ft/s^2. If you use a different value for gravity, change the numbers.
To get the velocity of the ball, we integrate the acceleration
vx = v0x = v0cos30 = 103.92
vy = -gt + v0y = -32.8t + v0sin40 = -32.8t + 60
To get the positioning, we integrate the speed.
x = v0cos30t + x0 = 103.92t - 350
y = 1/2*(-32.8)t² + v0sin30t + y0 = -16.4t² + 60t + 4
If the ball clears the fence, it means x = 0, y > 30
x = 0 -> 103.92 t - 350 = 0 -> t = 3.36 seconds
for t = 3.36s,
y = -16.4(3.36)^2 + 60*(3.36) + 4
= 20.45 ft
which is less than 30ft, so it means that the ball will NOT clear the fence.
Just for fun, let's check what the speed should have been :)
x = v0cos30t + x0 = v0cos30t - 350
y = 1/2*(-32.8)t² + v0sin30t + y0 = -16.4t² + v0sin30t + 4
x = 0 -> v0t = 350/cos30
y = 30 ->
-16.4t^2 + v0t(sin30) + 4 = 30
-16.4t^2 + 350sin30/cos30 = 26
t^2 = (26 - 350tan30)/-16.4
t = 3.2s
v0t = 350/cos30 -> v0 = 350/tcos30 = 123.34 ft/s
So he needed to hit the ball at at least 123.34 ft/s to clear the fence.
You're welcome, Thanks please :)
</span>