1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zvonat [6]
3 years ago
13

Find the derivative of the function by using the product rule. Simplify your answer.

Mathematics
1 answer:
OlgaM077 [116]3 years ago
5 0

Where is the question I dont see it sorry

You might be interested in
Find the limit
Lana71 [14]

Step-by-step explanation:

<h3>Appropriate Question :-</h3>

Find the limit

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

On substituting directly x = 1, we get,

\rm \: = \: \sf \dfrac{1-2}{1 - 1}-\dfrac{1}{1 - 3 + 2}

\rm \: = \sf \: \: - \infty \: - \: \infty

which is indeterminant form.

Consider again,

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

can be rewritten as

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 3x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 2x - x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( x(x - 2) - 1(x - 2))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ {(x - 2)}^{2} - 1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 2 - 1)(x - 2 + 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)(x - 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)}{x(x - 2)}\right]

\rm \: = \: \sf \: \dfrac{1 - 3}{1 \times (1 - 2)}

\rm \: = \: \sf \: \dfrac{ - 2}{ - 1}

\rm \: = \: \sf \boxed{2}

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right] = 2 \: }}

\rule{190pt}{2pt}

7 0
3 years ago
Read 2 more answers
(-8)–(-13)? Answer plz
Mademuasel [1]

Answer:

5

Step-by-step explanation:

(-8)-(-13)= 5

8 0
2 years ago
Read 2 more answers
18 is 75% of what number?
Nonamiya [84]

Answer:

24

Step-by-step explanation:

18 * 4 /3 = 72/3 = 24

8 0
3 years ago
Read 2 more answers
Basic compounds produce OH- ions when dissolved in water. true or false
Ket [755]

Answer:


Step-by-step explanation:


4 0
3 years ago
Heres 86 points just put what ever you want for the answer
aliina [53]

Answer:

hi

Step-by-step explanation:

thx for the points

:)

3 0
3 years ago
Read 2 more answers
Other questions:
  • PLZ HELP, WORTH 20 PTS.
    15·1 answer
  • 374÷3 explain how to do this problem
    15·2 answers
  • A right isosceles triangle has an angle with measure of 45°. If x represents the measure of the
    7·2 answers
  • A teacher surveyed all 120 of her students about their lunch and lunch schedule. The teacher asked two questions:
    10·1 answer
  • Which math operation determines the following pattern?
    14·2 answers
  • Help please ASAP I don’t really understand it!!
    9·1 answer
  • Fu Haifeng of China set a badminton world record with a smash of 332 kilometers per hour. A kilometer is about 58 mile.What is t
    15·1 answer
  • **PLEASE HELP!!*
    14·2 answers
  • Hey! Please help i will give brainlest!!·
    11·1 answer
  • A stained glass window is pictured below The area of the stained glass window is 42 square inches. What is the height of the sta
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!